Skip to main content
Log in

Simulating climate change: temperature extremes but not means diminish performance in a widespread butterfly

  • Original article
  • Published:
Population Ecology

Abstract

Climate-change induced shifts in species’ temporal and geographic niches have been well documented, while plastic and genetic responses to climatic change have received much less attention. Plastic responses to changes in temperature are generally well understood, though most experimental studies to date have used constant temperature regimes, the reliability of which is under debate. We here investigate plastic responses in the widespread butterfly Pieris napi to simulated climate change, using ecologically realistic diurnal temperature cycles and current and predicted temperature regimes including effects of a heat wave. Increasing the temperature mean by 3 °C predominantly affected developmental times, cold resistance and adult life span, while an increase in the diurnal temperature amplitude had very little effects. Immune function responded only weakly to different thermal regimes. The simulation of a prolonged heat wave severely impaired juvenile survival, body size and longevity, supporting the wide-held notion that extreme weather events will be much more important for species’ performance and local survival than moderate increases in temperature means. Given that the frequency of extreme weather events is predicted to increase with climate change, even widespread species may be negatively affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altermatt F (2011) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc B 277:1281–1287

    Article  Google Scholar 

  • Angilletta MJ Jr (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, New York

    Book  Google Scholar 

  • Bauerfeind SS, Perlick JEC, Fischer K (2009) Disentangling environmental effects on adult life span in a butterfly across the metamorphic boundary. Exp Gerontol 44:805–811

    Article  PubMed  Google Scholar 

  • Bergström J, Wiklund C (2002) Effects of size and nuptial gifts on butterfly reproduction: can females compensate for a smaller size through male-derived nutrients? Behav Ecol Sociobiol 52:296–302

    Article  Google Scholar 

  • Berwaerts K, Van Dyck H (2004) Take-off performance under optimal and suboptimal thermal conditions in the butterfly Pararge aegeria. Oecologia 141:536–545

    Article  PubMed  Google Scholar 

  • Bonnemaison L (1965) Insect pests of crucifers and their control. Annu Rev Entomol 10:233–256

    Article  Google Scholar 

  • Bozinovic F, Bastías DA, Boher F, Clavijo-Baquet S, Estay SA, Angilletta MJ Jr (2011) The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol Biochem Zool 84:543–552

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Buckley LB, Kingsolver JG (2012) The demographic impacts of shifts in climate means and extremes on alpine butterflies. Funct Ecol 26:969–977

    Article  Google Scholar 

  • Chen CP, Denlinger DL (1992) Reduction of cold injury in flies using an intermittent pulse of high temperature. Cryobiology 29:138–143

    Article  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Ebert G, Rennwald E (1993) Die Schmetterlinge Baden-Württembergs. Vol 1: Tagfalter 1. Eugen Ulmer GmbH & Co., Stuttgart (in German)

    Google Scholar 

  • Fagerström T, Wiklund C (1982) Why do males emerge before females? Protandry as a mating strategy in male and female butterflies. Oecologia 52:164–166

    Article  Google Scholar 

  • Feder ME, Garland T Jr, Marden JH, Zera AJ (2010) Locomotion in response to shifting climate zones: not so fast. Annu Rev Physiol 72:167–190

    Article  CAS  PubMed  Google Scholar 

  • Ferkau C, Fischer K (2006) Costs of reproduction in male Bicyclus anynana and Pieris napi butterflies: effects of mating history and food limitation. Ethology 112:1117–1127

    Article  Google Scholar 

  • Fierst JL (2011) A history of phenotypic plasticity accelerates adaptation to a new environment. J Evol Biol 24:1992–2001

    Article  CAS  PubMed  Google Scholar 

  • Fischer K, Fiedler K (2001) Effects of adult feeding and temperature regime on fecundity and longevity in the butterfly Lycaena hippothoe (Lycaenidae). J Lepid Soc 54:91–95

    Google Scholar 

  • Fischer K, Brakefield PM, Zwaan BJ (2003) Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology 84:3138–3147

    Article  Google Scholar 

  • Fischer K, Dierks A, Geister TL, Liszka M, Winter S, Pflicke C (2010) Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana. PLoS One 5:e15284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer K, Kölzow N, Höltje H, Karl I (2011) Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166:23–33

    Article  PubMed  Google Scholar 

  • Folguera G, Bastías DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Phys A 154:389–393

    Article  Google Scholar 

  • Folguera G, Bastías DA, Caers J, Rojas JM, Piulachs M, Bellés X, Bozinovic F (2011) An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: implications for global warming. Comp Biochem Phys A 159:242–246

    Article  Google Scholar 

  • Geister TL, Fischer K (2007) Testing the beneficial acclimation hypothesis: temperature effects on mating success in a butterfly. Behav Ecol 18:658–664

    Article  Google Scholar 

  • German Weather Service (Deutscher Wetterdienst) (2011) Federal Ministry of Transport, Building and Urban Development, Germany, Offenbach (in German). http://www.dwd.de

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103:14288–14293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hegland SJ, Nielsen A, Lázaro A, Bjerknes A-L, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195

    Article  PubMed  Google Scholar 

  • Hoffmann AA, Anderson A, Hallas R (2002) Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol Lett 5:614–618

    Article  Google Scholar 

  • Hoffmann AA, Sørensen JG, Loeschcke V (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J Therm Biol 28:175–216

    Article  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145

    Article  CAS  PubMed  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–18

    Chapter  Google Scholar 

  • Janowitz SA, Fischer K (2011) Opposing effects of heat stress on male versus female reproductive success in Bicyclus anynana butterflies. J Therm Biol 36:283–287

    Article  Google Scholar 

  • Juroszek P, von Tiedemann A (2013) Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. J Agric Sci 151:163–188

    Article  Google Scholar 

  • Karl I, Stoks R, De Block M, Janowitz SA, Fischer K (2011) Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Global Change Biol 17:676–687

    Article  Google Scholar 

  • Kingsolver JG, Ragland GJ, Diamond SE (2008) Evolution in a constant environment: thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 63:537–541

    Article  PubMed  Google Scholar 

  • Kurtz J, Sauer KP (2001) Gender differences in phenoloxidase activity of Panorpa vulgaris hemocytes. J Invertebr Pathol 78:53–55

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Shi L, Lu MX, Wang JJ, Du YZ (2011) Thermal tolerance of Frankliniella occidentalis: effects of temperature, exposure time, and gender. J Therm Biol 36:437–442

    Article  Google Scholar 

  • Martin LB, Hopkins WA, Mydlarz LD, Rohr JR (2010) The effects of anthropogenic global changes on immune functions and disease resistance. Ann N Y Acad Sci 1195:129–148

    Article  PubMed  Google Scholar 

  • McGuinness KA (2002) Of rowing boats, ocean liners and tests of the ANOVA homogeneity of variance assumption. Austral Ecol 27:681–688

    Article  Google Scholar 

  • Mitchell KA, Sgrò CM, Hoffmann AA (2010) Phenotypic plasticity in upper thermal limits is weakly related to Drosophila species distributions. Funct Ecol 25:661–670

    Article  Google Scholar 

  • Murdock CC, Paaijmans KP, Cox Foster D, Read AF, Thomas MB (2012a) Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol 10:869–876

    Article  CAS  PubMed  Google Scholar 

  • Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB (2012b) Complex effects of temperature on mosquito immune function. Proc R Soc B 279:3357–3366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niehaus AC, Angilletta MJ Jr, Sears MW, Franklin CE, Wilson RS (2012) Predicting the physiological performance of ectotherms in fluctuating thermal environments. J Exp Biol 215:694–701

    Article  PubMed  Google Scholar 

  • Nyamukondiwa C, Terblanche JS, Marshall KE, Sinclair BJ (2011) Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J Evol Biol 24:1927–1938

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. B Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Petavy G, David JR, Gibert P, Moreteau B (2001) Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating regimes. J Therm Biol 26:29–39

    Article  PubMed  Google Scholar 

  • Pijpe J, Brakefield PM, Zwaan BJ (2007) Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana. Evol Ecol 21:589–600

    Article  Google Scholar 

  • Polley L, Thompson RCA (2009) Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries. Trends Parasitol 25:285–291

    Article  CAS  PubMed  Google Scholar 

  • Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB (2011) Frontiers in climate change—disease research. Trends Ecol Evol 26:270–277

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolff J, Van de Meutter F, Stoks R (2004) Time constraints decouple age and size at maturity and physiological traits. Am Nat 64:559–565

    Article  Google Scholar 

  • Santos M, Castañeda LE, Rezende EL (2011) Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Funct Ecol 25:1169–1180

    Article  Google Scholar 

  • Schulte PM, Healy TM, Fangue NA (2011) Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr Comp Biol 51:691–702

    Article  PubMed  Google Scholar 

  • Sørensen JG, Kristensen TN, Kristensen KV, Loeschcke V (2007) Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster. Exp Gerontol 42:1123–1129

    Article  PubMed  Google Scholar 

  • StatSoft Inc. (2007) Statistica for Windows. Version 8.0. Tulsa, USA

    Google Scholar 

  • Stoks R, De Block M, Slos S, Van Doorslaer W, Rolff J (2006) Time constraints mediate predator-induced plasticity in immune function, condition, and life history. Ecology 87:809–815

    Article  PubMed  Google Scholar 

  • Terblanche JS, Nyamukondiwa C, Kleynhans E (2010) Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomol Exp Appl 137:304–315

    Article  Google Scholar 

  • Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350

    Article  Google Scholar 

  • Triggs A, Knell RJ (2012) Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella. J Anim Ecol 81:386–394

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc B Biol Sci 365:1025–2034

    Google Scholar 

  • Visser ME (2008) Keeping up with a warming world: assessing the rate of adaptation to climate change. Proc R Soc B 275:649–659

    Article  PubMed Central  PubMed  Google Scholar 

  • WallisDeVries MF, Baxter W, Van Vliet AJH (2011) Beyond climate envelopes: effects of weather on regional population trends in butterflies. Oecologia 167:559–571

    Article  PubMed Central  PubMed  Google Scholar 

  • Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B Biol Sci 365:2019–2024

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wang XG, Johnson MW, Daane KM, Nadel H (2009) High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Physiol Entomol 38:1496–1504

    CAS  Google Scholar 

  • Wiklund C, Kaitala A (1995) Sexual selection for large male size in a polyandrous butterfly: the effect of body size on male versus female reproductive success in Pieris napi. Behav Ecol 6:6–13

    Article  Google Scholar 

Download references

Acknowledgments

We thank Christin Park for assistance in the analyses of immune parameters and two anonymous reviewers for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Sandra Bauerfeind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauerfeind, S.S., Fischer, K. Simulating climate change: temperature extremes but not means diminish performance in a widespread butterfly. Popul Ecol 56, 239–250 (2014). https://doi.org/10.1007/s10144-013-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-013-0409-y

Keywords

Navigation