Skip to main content
Log in

Sharing a predator: can an invasive alien pest affect the predation on a local pest?

  • Original article
  • Published:
Population Ecology

Abstract

Invasive species can strongly affect biotic interactions in ecosystems, interacting both directly and indirectly with local species. In European tomato greenhouses, the invasive alien pest Tuta absoluta may impact the population dynamics of other pests like whiteflies. Besides inducing damages to the host plant and competing for resources with local pests, this alien species may exert a predator-mediated interaction on local pests sharing common natural enemies. Biocontrol agents usually used against whiteflies may also prey upon T. absoluta and this could alter the dynamics of local pest populations. We evaluated possible resource competition and predator-mediated interactions in a system involving one mirid predator Macrolophus pygmaeus and two pests, T. absoluta and a local whitefly, Bemisia tabaci, on greenhouse tomatoes. Results showed that both resource competition and predator-mediated interactions occurred simultaneously. In the presence of the shared predator, there was a short-term positive effect of T. absoluta on B. tabaci [up to 5.9-fold increase of B. tabaci juveniles (egg + larvae) after four weeks]. However, in the long-term there was a negative predator-mediated interaction of T. absoluta on B. tabaci, i.e., after ten weeks the density of B. tabaci was 7.3-fold lower in the presence of the invasive pest. We emphasize the critical role of generalist predators in managing both local and invasive alien pest populations and that the strength and direction of predator-mediated indirect interactions can depend on the time scale considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams PA, Matsuda H (1996) Positive indirect effects between prey species that share predators. Ecology 77:610–616

    Article  Google Scholar 

  • Abrams PA, Holt RD, Roth JD (1998) Apparent competition or apparent mutualism? Shared predation when populations cycle. Ecology 79:201–212

    Article  Google Scholar 

  • Alomar O, Goula M, Albajes R (2002) Colonisation of tomato fields by predatory mirid bugs (Hemiptera: Heteroptera) in northern Spain. Agric Ecosyst Environ 89:105–115

    Article  Google Scholar 

  • Arno J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84:513–520

  • Biondi A, Desneux N, Siscaro G, Zappala L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    Google Scholar 

  • Bonato O, Couton L, Fargues J (2006) Feeding preference of Macrolophus caliginosus (Heteroptera: Miridae) on Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol 99:1143–1151

    Article  PubMed  Google Scholar 

  • Bonato O, Lurette A, Vidal C, Fargues J (2007) Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol Entomol 32:50–55

    Article  Google Scholar 

  • Calvo F, Bolckmans K, Belda J (2012) Biological control-based IPM in sweet pepper greenhouses using Amblyseius swirskii (Acari: Phytoseiidae). Biocontrol Sci Techn 22:1398–1416

    Google Scholar 

  • Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Article  Google Scholar 

  • Desneux N, O’Neil R (2008) Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions. Bull Entomol Res 98:631–639

    Article  PubMed  CAS  Google Scholar 

  • Desneux N, O’Neil RJ, Yoo HJS (2006) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator, and the effects of prey dispersion, predator density and temperature. Environ Entomol 35:1342–1349

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Google Scholar 

  • Desneux N, Wajnberg E, Wyckhuys K, Burgio G, Arpaia S, Narvaez-Vasquez C, Gonzalez-Cabrera J, Catalan Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215

    Google Scholar 

  • Desneux N, Luna M, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408

    Article  Google Scholar 

  • Enkegaard A, Brodsgaard HF (2006) Biocontrol in protected crops: is lack of biodiversity a limiting factor? In: Eilenberg J, Hokkainen H (eds) An ecological and societal approach to biological control. Springer, The Netherlands, pp 91–112

    Chapter  Google Scholar 

  • Evans EW, Stevenson AT, Richards DR (1999) Essential versus alternative foods of insect predators: benefits of a mixed diet. Oecologia 121:107–112

    Article  Google Scholar 

  • Fauvel G, Malausa J, Kaspar B (1987) Etude en laboratoire des principales caractéristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Biocontrol 32:529–543 (in French)

    Google Scholar 

  • Gleeson SK, Wilson DS (1986) Equilibrium diet: optimal foraging and prey coexistence. Oikos 46:139–144

    Article  Google Scholar 

  • Harwood JD, Desneux N, Yoo HJS, Rowley DL, Greenstone MH, Obrycki JJ, O’Neil RJ (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Mol Ecol 16:4390–4400

    Article  PubMed  CAS  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Pop Biol 12:197–229

    Article  CAS  Google Scholar 

  • Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520

    Article  Google Scholar 

  • Holt RD, Grover J, Tilman D (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am Nat 144:741–771

    Article  Google Scholar 

  • Ito HC, Kondo NI (2012) Biological pest control by investing crops in pests. Popul Ecol 54:557–571

    Google Scholar 

  • Jiao XG, Xie W, Wang SL, Wu QJ, Zhou L, Pan HP, Liu BM, Zhang YJ (2012) Host preference and nymph performance of B and Q putative species of Bemisia tabaci on three host plants. J Pest Sci 85:423–430

    Google Scholar 

  • Jones T, Godfray H, van Veen F (2009) Resource competition and shared natural enemies in experimental insect communities. Oecologia 159:627–635

    Article  PubMed  Google Scholar 

  • Juen A, Hogendoorn K, Ma G, Schmidt O, Keller M (2012) Analysing the diets of invertebrate predators using terminal restriction fragments. J Pest Sci 85:89–100

    Article  Google Scholar 

  • Juliano S, Lounibos L, Nishimura N, Greene K (2010) Your worst enemy could be your best friend: predator contributions to invasion resistance and persistence of natives. Oecologia 162:709–718

    Article  PubMed  Google Scholar 

  • Li Y, Ke Z, Wang S, Smith GR, Liu X (2011) An exotic species is the favourite prey of a native enemy. PLoS ONE 6:e24299. doi:10.1371/journal.pone.0024299

    Article  PubMed  CAS  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  PubMed  CAS  Google Scholar 

  • Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  PubMed  CAS  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • McKenzie CL, Bethke JA, Byrne FJ, Chamberlin JR, Dennehy TJ, Dickey AM, Gilrein D, Hall PM, Ludwig S, Oetting RD, Osborne LS, Schmale L, Shatters RG (2012) Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J Econ Entomol 105:753–766

    Google Scholar 

  • Messelink GJ, van Maanen R, van Steenpaal SE, Janssen A (2008) Biological control of thrips and whiteflies by a shared predator: two pests are better than one. Biol Control 44:372–379

    Article  Google Scholar 

  • Messelink G, van Maanen R, van Holstein-Saj R, Sabelis M, Janssen A (2010) Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. Biocontrol 55:387–398

    Article  Google Scholar 

  • Miyashita T, Chishiki Y, Takagi SR (2012) Landscape heterogeneity at multiple spatial scales enhances spider species richness in an agricultural landscape. Popul Ecol 54:573–581

    Google Scholar 

  • Mouttet R, Bearez P, Thomas C, Desneux N (2011) Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions. PLoS ONE 6:e18840. doi:10.1371/journal.pone.0018840

    Article  PubMed  CAS  Google Scholar 

  • Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer resource dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Noonburg EG, Byers JE (2005) More harm than good: when invader vulnerability to predators enhances impact on native species. Ecology 86:2555–2560

    Article  Google Scholar 

  • Oliveira M, Henneberry T, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723

    Article  Google Scholar 

  • Parrella G, Scassillo L, Giorgini M (2012) Evidence for a new genetic variant in the Bemisia tabaci species complex and the prevalence of the biotype Q in southern Italy. J Pest Sci 85:227–238

    Google Scholar 

  • Perdikis DC, Lykouressis DP (2000) Effects of various items, host plants, and temperatures on the development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae). Biocontrol 17:55–60

    Google Scholar 

  • Perdikis DC, Lykouressis DP (2002) Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomol Exp Appl 102:261–272

    Article  Google Scholar 

  • Qiu BL, Dang F, Li SJ, Ahmed MZ, Jin FL, Ren SX, Cuthbertson AGS (2011) Comparison of biological parameters between the invasive B biotype and a new defined Cv biotype of Bemisia tabaci (Hemiptera: Aleyradidae) in China. J Pest Sci 84:419–427

    Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399

    Article  PubMed  CAS  Google Scholar 

  • Saleh D, Laarif A, Clouet C, Gauthier N (2012) Spatial and hostplant partitioning between coexisting Bemisia tabaci cryptic species in Tunisia. Popul Ecol 54:261–274

    Google Scholar 

  • Settle WH, Wilson LT (1990) Invasion by the variegated leafhopper and biotic interactions: parasitism, competition, and apparent competition. Ecology 71:1461–1470

    Article  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sih A, Bolnick DI, Luttberg B, Orrock JL, Peacor SD, Pintor LM, Preisser ER, Rehage JS, Vonesh JR (2010) Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621

    Article  Google Scholar 

  • Stout MJ, Thaler JS, Thomma BP (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol 51:663–689

    Article  PubMed  CAS  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47:561–594

    Article  PubMed  CAS  Google Scholar 

  • Tack AJM, Gripenberg S, Roslin T (2011) Can we predict indirect interactions from quantitative food webs?—an experimental approach. J Anim Ecol 80:108–118

    Article  PubMed  Google Scholar 

  • Urbaneja A, Monton H, Molla O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidicorus tenuis. J Appl Entomol 133:292–296

    Article  Google Scholar 

  • van Rijn PCJ, Van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679

    Article  Google Scholar 

  • Vandekerkhove B, De Clercq P (2010) Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus. Biocontrol 53:238–242

    Google Scholar 

  • Wootton JT (1994) The nature and consequences of indirect effects in ecological communities. Annu Rev Ecol Syst 25:443–466

    Article  Google Scholar 

Download references

Acknowledgments

We thank Antonio Biondi (University of Catania, Italy), George Heimpel, Emily Mohl and James Eckberg (University of Minnesota, USA) for helpful comments on an earlier version of the manuscript, Anaïs Chailleux, Hélène Kazuro and Cécile Thomas for their assistance throughout the experiments and Jacques Frandon (Biotop, InVivo AgroSolutions) for providing some biological materials. This work was supported by funds from Plant Health and Environment and Environment and Agronomy Departments of INRA and from the French ministry of agriculture (CASDAR Project 10063) to ND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Desneux.

Additional information

A. Bompard and C. C. Jaworski contributed equally to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bompard, A., Jaworski, C.C., Bearez, P. et al. Sharing a predator: can an invasive alien pest affect the predation on a local pest?. Popul Ecol 55, 433–440 (2013). https://doi.org/10.1007/s10144-013-0371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-013-0371-8

Keywords

Navigation