Skip to main content
Log in

Spatial and host-plant partitioning between coexisting Bemisia tabaci cryptic species in Tunisia

  • Original article
  • Published:
Population Ecology

Abstract

The whitefly Bemisia tabaci is a species complex including at least 24 morphologically indistinguishable species among which the Mediterranean (Med) and Middle East-Asia Minor I (MEAMI) species containing the biotypes commonly known as Q and B, respectively. These B and Q biotypes (hereafter referred to as MEAMI and Med species) are the most invasive agricultural pests of the B. tabaci complex worldwide. The spread of MEAMI and more recently of Med species into regions already invaded by other B. tabaci populations has been frequently seen to lead to their displacement by Med species. In Tunisia, in contrast to usual observations in the Mediterranean basin, Med and MEAMI species have been seen to co-occur in the main crop producing regions. Based on fine population genetics and field spatial distribution analyses, we found that the co-existence of these two interacting species was based on habitat partitioning including spatial and host-plant partitioning. Although they co-occurred at larger spatial scales, they excluded one another at sample scale. We observed neither spatial overlapping nor hybridization between MEAMI and Med B. tabaci. Vegetable crops were the main hosts for MEAMI specimens while 99.1% of the B. tabaci collected on the ornamental, Lantana camara, were Med specimens. Different patterns of genetic diversity were observed between the two species, as well as among Med specimens sampled on the ornamental versus vegetables, with the highest genetic diversity found in Med B. tabaci sampled on L. camara. These findings lead us to focus our discussion on the role played by lantana, human pressure, and competition, in the spatial and genetic patterns observed in the whitefly B. tabaci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  • Amarasekare P, Hoopes MF, Mouquet N, Holyoak M (2004) Mechanisms of coexistence in competitive metacommunities. Am Nat 164:310–326

    Article  PubMed  Google Scholar 

  • Banks G, Green RL, Cerezo ER, Louro D, Markham PG (1998) Use of RAPD-PCR to characterise whitefly species in the Iberian Peninsula. In: Abstracts 2nd international workshop on bemisia and geminiviral diseases, San Juan, Puerto Rico

  • Bel-Kadhi M, Onillon JC (2006) A la recherche d’une plante-hôte pour la multiplication des parasitoïdes de Bemisia tabaci dans le cadre d’une lutte biologique. Revue des Régions Arides 17:3–21 (in French with English abstract)

    Google Scholar 

  • Bel-Kadhi M, Onillon JC, Cenis JL (2008) Molecular characterization of Bemisia tabaci biotypes in Southern Tunisia. Tunis J Plant Prot 3:79–86

    Google Scholar 

  • Bosco D, Loria A, Sartor C, Cenis JL (2006) PCR-RFLP identification of Bemisia tabaci biotypes in the Mediterranean basin. Phytoparasitica 34:243–251

    Article  CAS  Google Scholar 

  • Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RA, De Barro P, Fröhlich DR (2007) Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44:1306–1319

    Article  PubMed  CAS  Google Scholar 

  • Brown JK (2007) The Bemisia tabaci complex: genetic and phenotypic variation and relevance to TYLCV-vector interactions. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, Dordrecht, pp 25–56

    Chapter  Google Scholar 

  • Brown J, Coats S, Bedford ID, Markham PG, Bird J, Fröhlich DR (1995) Characterization and distribution of esterase electromorphs in the whitefly Bemisia tabaci. Biochem Genet 33:205–214

    Article  PubMed  CAS  Google Scholar 

  • Chapuis M, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Cherif C, Russo M (1983) Cytological evidence of the association of a geminivirus with the tomato yellow leaf curl disease in Tunisia. J Phytopathol 108:221–225

    Article  Google Scholar 

  • Chermiti B, Braham M, Cenis JL, Alonso C, Beitia F (1997) Sur la présence en Tunisie des Biotypes B et non B de Bemisia tabaci (Homoptera, Aleyrodidae) et de leurs parasitoïdes associés. Bull IOBC-SROP 20:108–113 (in French with French abstract)

    Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Chu D, Zhang YJ, Brown JK, Cong B, Xu BY, Wu QJ, Zhu GR (2006) The introduction of the exotic Q biotype of Bemisia tabaci from the mediterranean region into China on ornamental crops. Fla Entomol 89:168–174

    Article  Google Scholar 

  • Crowder DW, Horowitz AR, De Barro PJ, Liu SS, Showalter AM, Kontsedalov S, Khasdan V, Shargal A, Liu J, Carrière Y (2010a) Mating behaviour, life history and adaptation to insecticides determine species exclusion between whiteflies. J Anim Ecol 79:563–570

    Article  PubMed  Google Scholar 

  • Crowder DW, Sitvarin MI, Carrière Y (2010b) Plasticity in mating behaviour drives asymmetric reproductive interference in whiteflies. Anim Behav 79:579–587

    Article  Google Scholar 

  • Dalmon A, Halkett F, Granier M, Delatte H, Peterschmitt M (2008) Genetic structure of the invasive pest Bemisia tabaci: evidence of limited but persistent genetic differentiation in glasshouse populations. Heredity 100:316–325

    Article  PubMed  CAS  Google Scholar 

  • Day M, Wiley CJ, Playford J, Zalucki MP (2003) Lantana: current management status and future prospects. ACIAR Monograph 102, Canberra, Australia

  • De Barro P, Bourne A (2010) Ovipositional host choice by an invader accelerates displacement of its indigenous competitor. Biol Invasions 12:3013–3023

    Article  Google Scholar 

  • De Barro P, Hart PJ (2000) Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera, Aleyrodidae) in Australia. Bull Entomol Res 90:103–112

    PubMed  Google Scholar 

  • De Barro P, Bourne A, Khan SA, Brancatini VAL (2006) Host-plant and biotype density interactions—their role in the establishment of the invasive B biotype of Bemisia tabaci. Biol Invasions 8:287–294

    Article  Google Scholar 

  • De Barro P, Liu SS, Bourne A (2010) Age-based differential host acceptability and human mediated disturbance prevent establishment of an invasive species and displacement of a native competitor. Biol Invasions 12:3429–3438

    Article  Google Scholar 

  • De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19

    Article  PubMed  Google Scholar 

  • De la Rúa P, Simón B, Cifuentes D, Martinez-Mora C, Cenis JL (2006) New insights into the mitochondrial phylogeny of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in the Mediterranean basin. J Zool Syst Evol Res 44:25–33

    Article  Google Scholar 

  • Debout G, Dalecky A, Ngomi AN, McKey DB (2009) Dynamics of species coexistence: maintenance of a plant–ant competitive metacommunity. Oikos 118:873–884

    Article  Google Scholar 

  • Delatte H, Reynaud B, Granier M, Thornary L, Lett JM, Goldbach R, Peterschmitt M (2005) A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bull Entomol Res 95:29–35

    Article  PubMed  CAS  Google Scholar 

  • Delatte H, Duyck PF, Triboire A, David P, Becker N, Bonato O, Reynaud B (2009) Differential invasion success among biotypes: case of Bemisia tabaci. Biol Invasions 11:1059–1070

    Article  Google Scholar 

  • Demichelis S, Arno C, Bosco D, Marian D, Caciagli P (2005) Characterization of biotype T of Bemisia tabaci associated with Euphorbia characias in Sicily. Phytoparasitica 33:196–208

    Article  Google Scholar 

  • Dinsdale A, Cook L, Riginos C, Buckley YM, De Barro P (2010) Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase I to identify species level genetic boundaries. Ann Entomol Soc Am 103:196–208

    Article  Google Scholar 

  • Dua VK, Gupta NC, Pandey AC, Sharma VP (1996) Repellency of Lantana camara (Verbenaceae) flowers against Aedes mosquitoes. J Am Mosquito Control 12:406–408

    CAS  Google Scholar 

  • Elbaz M, Lahav N, Morin S (2010) Evidence for pre-zygotic reproductive barrier between the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 100:581–590

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver.3.0: an integrated software package for population genetics data analysis. Evol Bioinforma 1:47–50

    CAS  Google Scholar 

  • Fröhlich D, Torres-Jerez I, Bedford PG, Markham PG, Brown JK (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol Ecol 8:1686–1691

    Article  Google Scholar 

  • Gauthier N, Dalleau-Clouet C, Bouvret ME (2008) Twelve new polymorphic microsatellite loci and PCR multiplexing in the whitefly, Bemisia tabaci. Mol Ecol Resour 8:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Gilbert B, Srivastava DS, Kirby KR (2008) Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos 117:944–950

    Article  Google Scholar 

  • Gröning J, Lücke N, Finger A, Hochkirch A (2007) Reproductive interference in two ground-hopper species: testing hypotheses of coexistence in the field. Oikos 116:1449–1460

    Article  Google Scholar 

  • Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y, Ghanim M, Zchori-Fein E, Fleury F (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19:4365–4376

    Article  Google Scholar 

  • Hardin G (1960) Competitive exclusion principle. Science 131:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Horowitz A, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225

    Article  PubMed  CAS  Google Scholar 

  • Hubisz M, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Leisnham P, Juliano SA (2009) Spatial and temporal patterns of coexistence between competing Aedes mosquitoes in urban Florida. Oecologia 160:343–352

    Article  PubMed  Google Scholar 

  • Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YM, Wan FH (2007) Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318:1769–1772

    Article  PubMed  CAS  Google Scholar 

  • Moya A, Guirao P, Cifuentes D, Beitia F, Cenis JL (2001) Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Mol Ecol 10:891–897

    Article  PubMed  CAS  Google Scholar 

  • Muñiz M (2000) Host suitability of two biotypes of Bemisia tabaci on some common weeds. Entomol Exp Appl 95:63–70

    Article  Google Scholar 

  • Naveed M, Salam A, Saleem MA (2007) Contribution of cultivated crops, vegetables, weeds and ornamental plants in harboring of Bemisia tabaci (Homoptera: Aleyrodidae) and associated parasitoids (Hymenoptera: Aphelinidae) in cotton agroecosystems in Pakistan. J Pestic Sci 80:191–197

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Neill C, Daufresne T, Jones CG (2009) A competitive coexistence principle? Oikos 118:1570–1578

    Article  Google Scholar 

  • Pascual S, Callejas C (2004) Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull Entomol Res 94:369–375

    Article  PubMed  CAS  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reitz S, Trumble JT (2002) Competitive displacement among insects and arachnids. Annu Rev Entomol 47:435–465

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Simón B, Cenis JL, Demichelis S, Rapisarda C, Caciagli P, Bosco D (2003) Survey of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Italy with the description of a new biotype (T) from Euphorbia characias. Bull Entomol Res 93:259–264

    Article  PubMed  Google Scholar 

  • Simón B, Cenis JL, De La Rúa P (2007) Distribution patterns of the Q and B biotypes of Bemisia tabaci in the Mediterranean Basin based on microsatellite variation. Entomol Exp Appl 124:327–336

    Article  Google Scholar 

  • Sun DB, Xu J, Luan JB, Liu SS (2011) Reproductive incompatibility between the B and Q biotypes of the whitefly Bemisia tabaci in China: genetic and behavioural evidence. Bull Entomol Res 101:211–220

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Tahiri A, Sekkat A, Bennani A, Granier M, Delvare G, Peterschmitt M (2006) Distribution of tomato-infecting begomoviruses and Bemisia tabaci biotypes in Morocco. Ann Appl Biol 149:175–186

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tsagkarakou A, Tsigenopoulos K, Gorman K, Lagnel J, Bedford ID (2007) Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bull Entomol Res 97:29–40

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Brown JK (2006) First report of the Q biotype of Bemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparasitica 34:405–411

    Article  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Microchecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vassiliou VA, Jagge C, Grispou M, Pietrantonio PV, Tsagkarakou A (2008) Biotype status of Bemisia tabaci from various crops in Cyprus. Phytoparasitica 36:400–404

    Article  CAS  Google Scholar 

  • Wang ZL, Wang FZ, Chen S, Zhu MY (2002) Competition and coexistence in regional habitats. Am Nat 159:498–508

    Article  PubMed  Google Scholar 

  • Wang P, Ruan YM, Liu SS (2010) Crossing experiments and behavioral observations reveal reproductive incompatibility among three putative species of the whitefly Bemisia tabaci. Insect Sci 17:508–516

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Xu J, De Barro PJ, Liu SS (2010) Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bull Entomol Res 100:359–366

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was mainly funded by the “Institut de Recherche pour le Développement” through a grant for the Master student D. Saleh and some financial support for our associate researcher A. Laarif from the Tunisian “J.E.A.”, and by a French National Research Agency Program (BemisiaRisk project 06-PADD-04). The authors thank the reviewers and the editor for their useful comments which helped us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Gauthier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleh, D., Laarif, A., Clouet, C. et al. Spatial and host-plant partitioning between coexisting Bemisia tabaci cryptic species in Tunisia. Popul Ecol 54, 261–274 (2012). https://doi.org/10.1007/s10144-012-0303-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-012-0303-z

Keywords

Navigation