Skip to main content
Log in

A dynamic population model for tsetse (Diptera: Glossinidae) area-wide integrated pest management

  • Original Article
  • Published:
Population Ecology

Abstract

A spatial model of tsetse (Glossina palpalis ssp. and G. pallidipes) life cycle was created in FORTRAN, and four control measures [aerial spraying of non-residual insecticides, traps and targets, insecticide-treated livestock (ITL) and the sterile insect technique] were programmed into the model to assess how much of each of various combinations of these control tactics would be necessary to eradicate the population. The model included density-independent and -dependent mortality rates, temperature-dependent mortality, an age-dependent mortality, two mechanisms of dispersal and a component of aggregation. Sensitivity analyses assessed the importance of various life history features and indicated that female fertility and factors affecting survivorship had the greatest impact on the equilibrium of the female population. The female equilibrium was likewise reduced when dispersal and aggregation were acting together. Sensitivity analyses showed that basic female survivorship, age-dependent and temperature-dependent survivorship of adults, teneral-specific survivorship, daily female fertility, and mean temperature had the greatest effect on the four applied control measures. Time to eradication was reduced by initial knockdown of the population and due to the synergism of certain combinations of methods [e.g., traps-targets and sterile insect technique (SIT); ITL and SIT]. Competitive ability of the sterile males was an important parameter when sterile to wild male overflooding ratios were small. An aggregated wild population reduced the efficiency of the SIT, but increased it with increased dispersal. The model can be used interactively to facilitate decision making during the planning and implementation of operational area-wide integrated pest management programs against tsetse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The version of the model for the sensitivity analyses had additional variables for the accumulation of appropriate quantities.

References

  • Barclay HJ (1992a) Combining methods of insect pest control: partitioning mortality and predicting complementarity. Res Popul Ecol 34:91–107

    Article  Google Scholar 

  • Barclay HJ (1992b) Modelling the effects of population aggregation on the efficiency of insect pest control. Res Popul Ecol 34:131–141

    Article  Google Scholar 

  • Barclay HJ (2001) Modeling incomplete sterility in a sterile release program: interactions with other factors. Popul Ecol 43:197–206

    Article  Google Scholar 

  • Barclay HJ (2005) Mathematical models for the sterile release technique. In: Dyck VA, Robinson AS, Hendrichs J (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 147–174

    Google Scholar 

  • Barclay HJ, Hargrove JW (2005) Probability models to facilitate a declaration of pest-free status, with special reference to tsetse (Diptera: Glossinidae). Bull Entomol Res 95:1–11

    Article  CAS  PubMed  Google Scholar 

  • Barclay HJ, van den Driessche P (1989) Pest control models of combinations of sterile releases and trapping. Insect Sci Appl 10:107–116

    Google Scholar 

  • Barret K, Okali C (1998) Partnerships for tsetse control–community participation and other options. World Anim Rev 90:39–46

    Google Scholar 

  • Boni MF, Buckee CO, White NJ (2008) Mathematical models for a new era of malaria eradication. PLOS Med 5:e231

    Article  PubMed  Google Scholar 

  • Bouyer J, Sall B, Seck MT, Guerrini L, Vreysen MJB (2010) Stratified entomological sampling of an area-wide integrated pest management program: the example of Glossina palpalis gambiensis in the Niayes of Senegal. J Med Entomol (in press)

  • Buxton PA (1955) The natural history of tsetse flies. Lewis, London, UK

    Google Scholar 

  • Cattand P, Jannin J, Lucas P (2001) Sleeping sickness surveillance; an essential step towards elimination. Trop Med Int Health 6:348–361

    Article  CAS  PubMed  Google Scholar 

  • Challier A, Gouteux JP (1980) Ecology and epidemiological importance of Glossina palpalis in Ivory Coast forest zone. Insect Sci Appl 1:77–83

    Google Scholar 

  • Chapman NG (1976) Aerial spraying of tsetse (Glossina spp.) in Rhodesia with ultra-low volumes of endosulfan. Trans Rhod Sci Ass 57:12–21

    Google Scholar 

  • Dransfield RD, Brightwell R, Kyorku C, Williams B (1990) Control of tsetse fly (Diptera: Glossinidae) populations using traps at Nguruman, south-west Kenya. Bull Entomol Res 80:265–276

    Article  Google Scholar 

  • Du Toit R (1954) Trypanosomiasis in Zululand and the control of tsetse flies by chemical means. Onderstepoort J Vet Res 26:317–387

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (1992) Training manual for tsetse control personnel. Use of attractive devices for tsetse survey and control, vol. 4. FAO, Rome, Italy

  • Flinn PW, Hagstrum DW, Reed C, Phillips TW (2002) Simulation model of Rhyzopertha dominica population dynamics in concrete grain bins. J Stored Prod Res 40:39–45

    Article  Google Scholar 

  • Geerts S, Holmes PH (1998) Drug management and parasite resistance in bovine trypanosomosis in Africa. PAAT position paper. FAO, Rome, Italy

  • Glasgow PA (1963) The distribution and abundance of tsetse. Permagon, Oxford

    Google Scholar 

  • Gold HJ (1977) Mathematical modeling of biological systems–an introductory guidebook. Wiley, New York

    Google Scholar 

  • Green CH (1994) Bait methods for tsetse fly control. Adv Parasitol 34:229–291

    Article  CAS  PubMed  Google Scholar 

  • Haile DG, Weidhaas DE (1977) Computer simulation of mosquito populations (Anopheles albimanus) for comparing the effectiveness of control technologies. J Med Entomol 13:553–567

    CAS  PubMed  Google Scholar 

  • Hargrove JW (1981) Tsetse dispersal reconsidered. J Anim Ecol 50:351–373

    Article  Google Scholar 

  • Hargrove JW (1988) Tsetse: the limits of population growth. Med Vet Entomol 2:203–217

    Article  CAS  PubMed  Google Scholar 

  • Hargrove JW (2003) Tsetse eradication: sufficiency, necessity and desirability. Research report, DFID Animal Health Programme, Centre for Tropical Veterinary Medicine, University of Edinburgh, UK

  • Hargrove JW (2004) Tsetse population dynamics. In: Maudlin I, Holmes PH, Miles PH (eds) The trypanosomiases. CAB International, Wallingford, UK, pp 113–137

    Chapter  Google Scholar 

  • Hargrove JW, Vale GA (1980) Catches of Glossina morsitans morsitans Westwood and G. pallidipes Austen (Diptera: Glossinidae) in riverine and deciduous woodlands in Zimbabwe. Bull Entomol Res 70:571–578

    Article  Google Scholar 

  • Hargrove JW, Omolo S, Msalilwa JSI, Fox B (2000) Insecticide-treated cattle for tsetse control: the power and the problems. Med Vet Entomol 14:123–130

    Article  CAS  PubMed  Google Scholar 

  • Hay SI, Tucker CJ, Rogers D, Packer MJ (1996) Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease. Ann Trop Med Parasitol 90:1–19

    CAS  PubMed  Google Scholar 

  • Hendrichs J, Kenmore P, Robinson AS, Vreysen MJB (2007) Area-wide integrated pest management (AW-IPM): principles, practice and prospects. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 3–33

    Google Scholar 

  • Hocking KS, Lamerton JF, Lewis EA (1963) Tsetse fly control and eradication. Bull World Health Org 28:811–823

    CAS  PubMed  Google Scholar 

  • Holmes PH, Torr SJ (1988) The control of animal trypanosomiasis in Africa: current methods and future trends. Outlook Agric 17:54–60

    Google Scholar 

  • Jaenson TGT (1980) Mating behaviour of females of Glossina pallidipes Austen (Diptera: Glossinidae). Bull Entomol Res 70:49–60

    Article  Google Scholar 

  • Johnstone DR, Cooper JF (1986) Forecasting the efficiency of the sequential aerosol technique for tsetse fly control. Pestic Sci 17:675–685

    Article  Google Scholar 

  • Jordan AM (1974) Recent developments in the ecology and methods of control of tsetse flies (Glossina spp.) (Dipt., Glossinidae)—a review. Bull Entomol Res 63:361–399

    Article  Google Scholar 

  • Jordan AM (1986) Trypanosomiasis control and African rural development. Longman, England

    Google Scholar 

  • Kappmeier Green K, Potgieter FT, Vreysen MJB (2007) A strategy for an area-wide control campaign with an SIT component to establish a tsetse-free South Africa. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 309–323

    Chapter  Google Scholar 

  • Kgori PM, Modo S, Torr SJ (2006) The use of aerial spraying to eliminate tsetse from the Okavango Delta of Botswana. Acta Trop 99:184–199

    Article  CAS  PubMed  Google Scholar 

  • Klassen W (2005) Area-wide integrated pest management and the sterile insect technique. In: Dyck VA, Robinson AS, Hendrichs J (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 39–68

    Google Scholar 

  • Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462

    Google Scholar 

  • Knipling EF (1979) The basic principles of insect population suppression and management. Agriculture Handbook Number 512, USDA/SEA, Washington, DC, USA

  • Koul O, Cuperus G, Elliott N (2008) Area-wide pest management; theory and implementation. CAB International, Wallingford, UK

    Book  Google Scholar 

  • Krafsur ES (2003) Tsetse fly population genetics: an indirect approach to dispersal. Trends Parasitol 19:162–166

    Article  PubMed  Google Scholar 

  • Langley PA (1977) Physiology of tsetse flies (Glossina spp.) (Diptera: Glossinidae): a review. Bull Entomol Res 67:523–574

    Article  CAS  Google Scholar 

  • Laveissière C, Gouteux JP, Couret D (1980) Essais de méthodes de lutte contre les glossines en zone pré-forestière de Côte d’Ivoire. 1. Présentation de la zone, du matériel et des méthodes. Cah. ORSTOM, sér. Ent Méd Parasitol 18:229–243 (in French)

  • Laveissière C, Eouzan JP, Grebaut P, Lemasson JJ (1990) The control of riverine tsetse. Insect Sci Appl 3:427–441

    Google Scholar 

  • Leak SGA (1998) Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. CAB International, Wallingford, UK

    Google Scholar 

  • Lysyk TJ, Steelman CD (2004) Effect of aggregation of horn fly populations within cattle herds and consequences for sampling to obtain unbiased estimates of abundance. J Med Entomol 41:598–606

    Article  CAS  PubMed  Google Scholar 

  • Mohammed-Ahmed MM, Mihok S (1999) Responses of Glossina fuscipes fuscipes (Diptera: Glossinidae) and other Diptera to carbon dioxide in linear and dense forests. Bull Entomol Res 89:177–184

    Article  Google Scholar 

  • Mumford JD (2005) Application of benefit/cost analysis to insect pest control using the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 481–498

    Google Scholar 

  • Nash TAM (1969) Africa’s bane: the tsetse fly. Collins, London

    Google Scholar 

  • Nash TAM, Page WA (1953) The ecology of Glossina palpalis in Northern Nigeria. Trans R Entomol Soc Lond 104:71–169

    Google Scholar 

  • Oladunmade MA, Takken W, Dengwat L, Ndams I (1985) Studies on insecticide impregnated targets for the control of riverine Glossina spp. (Diptera: Glossinidae) in the sub-humid savanna zone of Nigeria. Bull Entomol Res 75:275–281

    Article  Google Scholar 

  • Oladunmade MA, Feldmann U, Takken W, Tenabe SO, Hamann H-J, Onah J, Dengwat L, Van der Vloedt AMV, Gingrich RE (1990) Eradication of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae) from agropastoral land in central Nigeria by means of the sterile insect technique. In: Sterile Insect Technique for Tsetse Control and Eradication (proceedings final research coordination meeting, Vom, Nigeria, 6–10 June 1988). IAEA/RC/319.3/1, 5-23, Vienna, Austria, pp 5–23

  • Phelps RJ, Burrows PM (1969) Puparial duration in Glossina morsitans orientalis under conditions of constant temperature. Entomol Exp Appl 12:33–43

    Article  Google Scholar 

  • Phelps RJ, Clarke GPY (1974) Seasonal elimination of some size classes in males of Glossina morsitans morsitans Westw. (Diptera: Glossinidae). Bull Entomol Res 64:313–324

    Article  Google Scholar 

  • Politzar H, Cuisance D (1984) An integrated campaign against riverine tsetse, Glossina palpalis gambiensis and Glossina tachinoides, by trapping and the release of sterile males. Insect Sci Appl 5:439–442

    Google Scholar 

  • Rogers DJ (1990) A general model for tsetse populations. Insect Sci Appl 11:331–346

    Google Scholar 

  • Rogers DJ, Randolph SE (1984) A review of density-dependent processes in tsetse populations. Insect Sci Appl 5:397–402

    Google Scholar 

  • Safranyik L, Barclay H, Thomson A, Riel WG (1999) A population dynamics model for the mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae). Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Information Report BC-X-386

  • Shereni W (1990) Strategic and tactical developments in tsetse control in Zimbabwe (1981–1989). Insect Sci Appl 11:399–409

    Google Scholar 

  • Spielberger U, Ma’isa BK, Abdurrahim U (1977) Tsetse (Diptera: Glossinidae) eradication by aerial (helicopter) spraying of persistent insecticides in Nigeria. Bull Entomol Res 67:589–598

    Article  Google Scholar 

  • Swynnerton CFM (1936) The tsetse flies of East Africa. Trans R Entomol Soc Lond 84:1–579

    Google Scholar 

  • Thomson JW, Mitchell M, Rees RB, Shereni W, Schönefeld AH, Wilson A (1991) Studies on the efficacy of deltamethrin applied to cattle for the control of tsetse flies (Glossina spp.) in southern Africa. Trop Anim Health Prod 23:221–226

    Article  Google Scholar 

  • Torr SJ, Parker AG, Leigh-Browne G (1989) The responses of Glossina pallidipes Austen (Diptera: Glossinidae) to odour-baited traps and targets in Somalia. Bull Entomol Res 79:99–108

    Article  Google Scholar 

  • Vale GA (1977) Feeding responses of tsetse flies (Diptera: Glossinidae) to stationary hosts. Bull Entomol Res 67:635–649

    Article  Google Scholar 

  • Vale GA (1998) Responses of tsetse flies (Diptera: Glossinidae) to vegetation in Zimbabwe: implications for population distribution and bait siting. Bull Entomol Res 88:S7–S59

    Article  Google Scholar 

  • Vale GA, Torr SJ (2005) User-friendly models of the costs and efficacy of tsetse control: application to sterilizing and insecticidal techniques. Med Vet Entomol 19:293–305

    Article  CAS  PubMed  Google Scholar 

  • Vale GA, Lovemore DF, Flint S, Cockbill GF (1988) Odour baited targets to control tsetse flies, Glossina spp (Diptera: Glossinidae) in Zimbabwe. Bull Entomol Res 78:31–49

    Article  CAS  Google Scholar 

  • Van der Vloedt AMV, Barnor H (1984) Effects of ionizing radiation on tsetse biology. Their relevance to entomological monitoring during integrated control programmes using the sterile insect technique. Insect Sci Appl 5:431–437

    Google Scholar 

  • Van der Vloedt AMV, Baldry DAT, Politzar H, Kulzer H, Cuisance D (1980) Experimental helicopter applications of decamethrin followed by release of sterile males for the control of riverine vectors of trypanosomiasis in Upper Volta. Insect Sci Appl 1:105–112

    Google Scholar 

  • Vreysen MJB (2005) Monitoring sterile and wild insects in area-wide integrated pest management programmes. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 325–361

    Google Scholar 

  • Vreysen MJB (2006) Prospects for area-wide integrated control of tsetse flies (Diptera: Glossinidae) and trypanosomosis in sub-Saharan Africa. Rev Soc Entomol Argent 65:1–21

    Google Scholar 

  • Vreysen MJB, Van der Vloedt AMV (1992) The use of gamma sterilised Glossina austeni females as sentinel insects for entomological monitoring in tsetse control programmes. Revue Elev Méd Vét Pays Trop 45:303–309

    Google Scholar 

  • Vreysen MJB, Mebrate A, Menjeta M, Bancha B, Woldeyes G, Musie K, Bekele K, Aaboset G (1999) The distribution and relative abundance of tsetse flies in the Southern Rift Valley of Ethiopia: preliminary survey results. In: 25th meeting of the International Scientific Council for Trypanosomiasis Research and Control, Mombasa, Kenya, 27 September–1 October, 1999. OAU/IBAR, Nairobi, Kenya, pp 202–213

  • Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, Juma KG, Dyck VA, Msangi AR, Mkonyi PA, Feldmann HU (2000) Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 93:123–135

    Article  CAS  PubMed  Google Scholar 

  • Vreysen MJB, Robinson AS, Hendrichs J (eds) (2007) Area-wide control of insect pests: from research to field implementation. Springer, Dordrecht

  • Wehrhahn CF (1973) An approach to modelling spatially heterogeneous populations and the simulation of populations subject to sterile insect release programs. In: computer models and application of the sterile male technique. Proceedings of a panel organised by the joint FAO/IAEA Division of Atomic Energy in Food and Agriculture, 13–17 December 1971. Vienna, Austria. STI/PUB/340, IAEA, Vienna, Austria, pp 45–64

  • Williams B, Dransfield R, Brightwell R (1992) The control of tsetse flies in relation to fly movement and trapping efficiency. J Appl Ecol 29:163–179

    Article  Google Scholar 

  • Williamson DL, Dame DA, Lee CW, Gates DB, Cobb PE (1983a) Integration of insect sterility and insecticides for control of Glossina morsitans morsitans (Diptera: Glossinidae) in Tanzania: IV. Application of endosulfan as an aerosol prior to the release of sterile males. Bull Entomol Res 73:383–389

    Article  Google Scholar 

  • Williamson DL, Dame DA, Gates DB, Cobb PE, Bakuli B, Warner PV (1983b) Integration of insect sterility and insecticides for control of Glossina morsitans morsitans (Diptera: Glossinidae) in Tanzania: V. The impact of sequential releases of sterilized tsetse flies. Bull Entomol Res 73:391–404

    Article  Google Scholar 

  • Wooff WR (1964) The eradication of Glossina morsitans morsitans Westw. in Ankole, Western Uganda, by dieldrin applications. In: International Scientific Council for Trypanosomiasis Research, Tenth Meeting, Kampala, CCTA, Uganda, pp 157–169

  • Wooff WR (1968) The eradication of the tsetse fly Glossina morsitans Westw. and Glossina pallidipes Aust., by hunting. In: International Scientific Council for Trypanosomiasis Research, Twelfth Meeting, Bangui, OAU/STRC, Central African Republic, pp 267–286

Download references

Acknowledgments

We thank John Hargrove for insightful discussions in the earlier stages of developing the model and Steve Peck for offering helpful suggestions on an earlier draft of the model. We also thank three anonymous reviewers whose thorough reviews and comments have improved the presentation. The model development was supported by a grant from the EU and with funds from the FAO/IAEA, Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh J. Barclay.

Appendices

Appendix I

Below are shown blocks of five-by-five cells and their equilibrium values of wild adults per hectare. Each modeled square kilometre has four identical such five-by-five blocks.

 

Regular spatial distribution

Slightly aggregated

48.2

48.2

48.2

48.2

48.2

33.7

33.7

33.7

33.7

33.7

48.2

48.2

48.2

48.2

48.2

33.7

56.3

78.9

56.3

33.7

48.2

48.2

48.2

48.2

48.2

33.7

78.9

123.9

78.9

33.7

48.2

48.2

48.2

48.2

48.2

33.7

56.3

78.9

56.3

33.7

48.2

48.2

48.2

48.2

48.2

33.7

33.7

33.7

33.7

33.7

Moderately aggregated

Highly aggregated

24.1

24.1

24.1

24.1

24.1

19.3

19.3

19.3

19.3

19.3

24.1

61.7

99.3

61.7

24.1

19.3

45.1

70.9

45.1

19.3

24.1

99.3

174.3

99.3

24.1

19.3

70.9

429.2

70.9

19.3

24.1

61.7

99.3

61.7

24.1

19.3

45.1

70.9

45.1

19.3

24.1

24.1

24.1

24.1

24.1

19.3

19.3

19.3

19.3

19.3

Appendix II

List of subroutines, variables and parameters (with default values) in the model.

Subroutines:

Input:

reads a file allowing user to choose initial conditions and controls

Init:

initializes most of the population variables

Delfts:

initializes user-requested aggregation patterns

Contrl:

puts chosen control measures (except SIT) into effect

Mating:

performs mating and SIT each time step

Disperse:

performs dispersal among adjacent hectares each time step

Output1:

outputs tabular results to a file every 3 months

Output2:

outputs results to a file for graphing every month

List of variablesFootnote 1:

The population components shown as (Nos./ha/age class) are triply subscripted, taking account of age and spatial specificity.

pup:

total number of pupae alive today (Nos./ha)

crtmax:

the current developmental time for fly larvae (days)

fe:

number of adult flies emerging today (Nos./ha)

ftot:

total number of wild adult flies alive today (Nos./km2)

fm:

total adult fertile males alive (Nos./ha/age class)

ff:

total adult fertile females alive (Nos./ha/age class)

vm:

total virgin fertile males alive (Nos./ha/age class)

vf:

total virgin fertile females alive (Nos./ha/age class)

gm:

total adult sterile males alive (Nos./ha/age class)

gf:

total adult sterile females alive (Nos./ha/age class)

wm:

total virgin sterile males alive (Nos./ha/age class)

wf:

total virgin sterile females alive (Nos./ha/age class)

ferfem:

fertile females saved for output (Nos./km2)

ffqx, fmqx, vfqx, vmqx, gfqx, gmqx, wfqx, wmqx:

density-independent mortality of fertile females, fertile males, virgin females, virgin males, sterile or sterile-mated females, sterile males, virgin sterile females, and virgin sterile males respectively (Nos./ha/age class)

ffdqx, fmdqx, vfdqx, vmdqx, gfdqx, gmdqx, wfdqx, wmdqx:

density-dependent mortality of fertile females, fertile males, virgin females, virgin males, sterile or sterile mated females, sterile males, virgin sterile females, and virgin sterile males respectively (Nos./ha/age class)

pupdd:

proportion of density-dependent pupal mortality (/ha)

adltdd:

proportion of density-dependent adult mortality (/ha)

pqm:

mean proportion of density-independent pupal mortality

pqdm:

mean proportion of density-dependent pupal mortality

qxm:

mean proportion of density-independent adult mortality

qxdm:

mean proportion of density-dependent adult mortality

List of parameters:

Natural parameters  Default value

fet:

total initial adult pests (carrying capacity)  50000

pup0:

initial number of pupae  20000

lxft:

d-i daily female temperature-dependent survivorship

lxmt:

d-i daily female temperature-dependent survivorship

lxst:

d-i daily female temperature-dependent survivorship

lxf:

d-i basic daily survivorship of adult females  0.99

lxm:

d-i basic daily survivorship of adult males  0.98

lxs:

d-i basic daily survivorship of sterile males  0.92

lxp:

d-i basic daily survivorship of pupae  0.98

di:

modifier for changing density independent mortality  1.0

mx:

maximum daily oviposition of adult pests (larvae/day)  0.1

ag:

aggregation coefficient (a nominal measure)  1.0

attr:

matrix of attractions for dispersing adults  0,1

maxt:

maximum daily temperature (°C)  40

mint:

minimum daily temperature (°C)  20

tmin:

minimum temperature for survival of pupae (°C)  15

tmax:

maximum temperature for survival of pupae (°C)  45

thr:

threshold temperature for pupal development (°C)  18

tmp:

array containing daily temperatures sin(jd)

yrs:

total years for simulation to run  20

spec:

glossina palpalis (1) or pallidipes (2) (flag)  1,2

fpm:

propensity of the females to mate (by age; %)

mpm:

propensity of the males to mate (by age; %)

tlx:

additional lx reduction specific to tenerals  0.98

tmpqx:

multiplier for temperature effect on mortality  >1

mdisp:

flag for choosing the mode of dispersal  1,2

Control parameters

kdisp:

flag to enable the dispersal subroutine  0,1

pdisp:

percent of flies dispersing from each cell  50

sp:

percent kill from one cover spray  (1–100%) 0.0

xn:

number of odor traps  0

x:

mortality from odor trapping (proportion)  0.0

po:

number of insecticide-treated cattle  0

y:

mortality from cattle (proportion)  0.0

ipo:

counter to determine cells for cattle  1–10

igroup:

number of tens of groups of treated cattle  1,2,3

oflr:

overflooding ratio of sterile releases  0

r:

rate of release of sterile males (number/5 days/ha)  0.0

c:

competitive ability of sterile males  1.0

q:

residual fertility of irradiated males (percent)  0.0

jdate:

julian date to begin control  5

jdate-as:

julian date to begin aerial spraying  5

jdate-tt:

julian date to begin trapping  5

jdate-il:

julian date to begin livestock catches  5

jdate-sr:

julian date to begin sterile releases  5

count:

flag for each control method (1)  0

rmf:

relative mating frequency of steriles with wild palpalis  1.0,0.9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barclay, H.J., Vreysen, M.J.B. A dynamic population model for tsetse (Diptera: Glossinidae) area-wide integrated pest management. Popul Ecol 53, 89–110 (2011). https://doi.org/10.1007/s10144-010-0224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-010-0224-7

Keywords

Navigation