Skip to main content
Log in

Rainfall extremes explain interannual shifts in timing and synchrony of calving in topi and warthog

  • Original Article
  • Published:
Population Ecology

Abstract

We tested the hypothesis that ungulates time and synchronize births to match gestation and lactation with peak food availability and quality in seasonal environments, using ground counts of topi and warthog conducted over 174 months (July 1989–December 2003) in the Mara–Serengeti ecosystem. During this 15-year period, 2,725 newborn and 45,574 adult female topi and 933 newborn and 7,831 adult warthogs were recorded. Births were distinctly synchronized in both species but far less so than in ungulates in temperate regions. Extreme droughts delayed onset and reduced synchrony of calving and natality rates but high rainfall advanced onset and increased synchrony of calving and natality rates in both species, supporting the seasonality hypothesis. Annual shifts in birth peaks were significantly negatively correlated with the preceding wet season rainfall. Varying the timing and synchrony of births and natality rates are widespread but little understood adaptations of ungulates to climatic extremes. Climate change heightens the need for advancing this understanding because increasing frequency and severity of droughts is likely to decouple phenology of breeding in seasonally breeding ungulates from that in their food plants. Similar studies of African ungulates are either extremely rare or non-existent. New approaches to estimating the time of peak births and its confidence limits and the degree of synchrony of breeding are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams LG, Dale BW (1998) Timing and synchrony of parturition in Alaskan caribou. J Mammal 79:287–294. doi:10.2307/1382865

    Article  Google Scholar 

  • Alexander G (1956) Influences of nutrition upon duration of gestation in sheep. Nature 178:1058–1059. doi:10.1038/1781058a0

    Article  CAS  PubMed  Google Scholar 

  • Ayalon N (1978) A review of embryonic mortality in cattle. J Reprod Fertil 74:631–636

    Google Scholar 

  • Berger J (1992) Facilitation of reproductive synchrony by gestation adjustment in gregarious mammals: a new hypothesis. Ecology 73:323–329. doi:10.2307/1938743

    Article  Google Scholar 

  • Boshe JI (1981) Reproductive ecology of the warthog Phacochoerus aethiopicus and its significance for management in the eastern Selous Game Reserve, Tanzania. Biol Conserv 20:37–44. doi:10.1016/0006-3207(81)90059-8

    Article  Google Scholar 

  • Bowyer RT, VanBallenberghe V, Kie JG (1998) Timing and parturition in Alaskan moose: long-term versus proximal effects of climate. J Mammal 79:1332–1344. doi:10.2307/1383025

    Article  Google Scholar 

  • Bro-Jørgensen J (2002) Overt female mate competition and preference for central males in a lekking antelope. Proc Natl Acad Sci USA 99:9290–9293. doi:10.1073/pnas.142125899

    Article  PubMed  CAS  Google Scholar 

  • Bro-Jørgensen J (2003) No peace for estrous topi cows on leks. Behav Ecol 14:521–525. doi:10.1093/beheco/arg026

    Article  Google Scholar 

  • Brown CE (1936) Rearing wild animals in captivity and gestation periods. J Mammal 17:10–13. doi:10.2307/1374541

    Article  Google Scholar 

  • Buechner HK (1960) The bighorn sheep in the United States, its past, present and future. Wildlife Monograph 4. The Wildlife Society, Washington, D.C.

  • Bunnell FL (1982) The lambing period of mountain sheep: synthesis, hypothesis, and tests. Can J Zool 60:1–14. doi:10.1139/z82-001

    Article  Google Scholar 

  • Byers JA, Hogg JT (1995) Environmental effects on parental growth rate in pronghorn and bighorn: further evidence for energy constraint on sex-biased maternal expenditure. Behav Ecol 6:451–457. doi:10.1093/beheco/6.4.451

    Article  Google Scholar 

  • Child G, Roth HH, Kerr M (1968) Reproductive and recruitment patterns in warthog population. Mammalia 32:6–29

    Article  Google Scholar 

  • Clutton-Brock TH, Guinnes FE, Albon S (1982) Red deer. Behaviour and ecology of two sexes. University of Chicago Press, Chicago

    Google Scholar 

  • Clutton-Brock TH, Albon SD, Guiness FE (1989) Fitness costs of gestation and lactation in wild mammals. Nature 337:260–262. doi:10.1038/337260a0

    Article  CAS  PubMed  Google Scholar 

  • Cook RC, Murray DL, Cook JG, Zager P, Monfort SL (2001) Nutritional influences on breeding dynamics in elk. Can J Zool 79:845–853. doi:10.1139/cjz-79-5-845

    Article  Google Scholar 

  • Côté SD, Festa-Bianchet M (2001) Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality. Oecologia 127:230–238. doi:10.1007/s004420000584

    Article  Google Scholar 

  • David JHM (1975) Observations on mating behaviour, parturition, suckling and the mother-young bond in bontebok (Damaliscus dorcas dorcas). J Zool 177:203–223

    Article  Google Scholar 

  • Desmukh IK (1984) A common relationship between precipitation and grassland peak biomass for east and southern Africa. Afr J Ecol 22:181–186. doi:10.1111/j.1365-2028.1984.tb00693.x

    Article  Google Scholar 

  • Du Plessis SS (1972) Ecology of blesbok with special reference to productivity. Wildlife Monograph 30. The Wildlife Society, Washington, D.C.

  • Estes RD (1976) The significance of breeding synchrony in the wildebeest. Afr Wildl J 14:135–152

    Google Scholar 

  • Estes RD, Estes RK (1979) The birth and survival of wildebeest calves. Z Tierpsychol 50:54–95

    Google Scholar 

  • Fairall N (1968) The reproductive seasons of some mammals in the Kruger National Park. Zool Afr 3:189–210

    Google Scholar 

  • Festa-Bianchet M (1988) Birth date and survival in bighorn lambs (Ovis candensis). J Zool (Lond) 214:653–661. doi:10.1111/j.1469-7998.1988.tb03764.x

    Article  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13:58–63. doi:10.1016/S0169-5347(97)01237-8

    Article  Google Scholar 

  • Gaillard J-M, Festa-Bianchet M, Yoccoz NG, Loison A, Toigo C (2000) Temporal variation in fitness components and dynamics of large herbivores. Annu Rev Ecol Syst 31:367–393. doi:10.1146/annurev.ecolsys.31.1.367

    Article  Google Scholar 

  • Game Department Annual Reports (GDAR) (1954) Kenya Government Printers, Nairobi, Kenya

  • Game Department Annual Reports (GDAR) (1962) Kenya Government Printers, Nairobi, Kenya

  • Green WCH, Rothstein A (1993) Asynchronous parturition in bison: implications for the hider-follower dichotomy. J Mammal 74:920–925. doi:10.2307/1382430

    Article  Google Scholar 

  • Grimsdell JJR (1973) Reproduction in the African buffalo, Syncerus caffer, in Western Uganda. J Reprod Fertil Suppl 19:303–318

    CAS  PubMed  Google Scholar 

  • Hart GH, Guilbert HR (1933) Vitamin-A deficiency as related to reproduction in range cattle. Univ Calif Afr Exp Stat Bull 560

  • Hastenrath S, Polzin D, Mutai C (2007) Diagnosing the 2005 drought in equatorial east Africa. J Clim 20:4628–4637. doi:10.1175/JCLI4238.1

    Article  Google Scholar 

  • Hillman JC, Hillman AKK (1977) Mortality of wildlife in Nairobi National Park, during the drought of 1973–1974. Afr Wildl J 15:1–18

    Google Scholar 

  • Holland Ø, Mysterud A, Røed KH, Coulson T, Gjøstein H, Weladji RB, Nieminen M (2006) Adaptive adjustment of offspring sex ratio and maternal reproductive effort in an iteroparous mammal. Proc R Soc Lond B 273:293–299. doi:10.1098/rspb.2005.3330

    Article  Google Scholar 

  • Howell CE, Rollins WC (1951) Environmental sources of variation in the gestation length of the horse. J Anim Sci 10:789–796

    Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168. doi:10.3354/cr017145

    Article  Google Scholar 

  • Hutchinson HG, MacFarlane JS (1958) Variation in gestation period of Zebu cattle under ranch conditions. Afr Agric For J 24:148–152

    Google Scholar 

  • Ims RA (1990a) The ecology and evolution of reproductive synchrony. Trends Ecol Evol 5:135–140. doi:10.1016/0169-5347(90)90218-3

    Article  Google Scholar 

  • Ims RA (1990b) On the adaptive value of reproductive synchrony as a predator-swamping strategy. Am Nat 136:485–498. doi:10.1086/285109

    Article  Google Scholar 

  • Kendall M, Stuart A (1979) Advanced theory of statistics. Inference and relationship, vol 2, 4th edn. Charles Griffin, London

    Google Scholar 

  • Kiltie RA (1982) Intraspecific variation in the mammalian gestation period. J Mammal 63:646–652. doi:10.2307/1380270

    Article  Google Scholar 

  • Kitchen DW (1974) Social behaviour and ecology of pronghorn. Wildlife Monograph 38. The Wildlife Society, Washington, D.C.

  • Langvatn R, Mysterud A, Stenseth NC, Yoccoz NG (2004) Timing and synchrony of ovulation in red deer constrained by short northern winters. Am Nat 163:763–772. doi:10.1086/383594

    Article  PubMed  Google Scholar 

  • Leuthold W, Leuthold BM (1975) Temporal patterns of reproduction in ungulates of Tsavo East National Park, Kenya. Afr Wildl J 13:159–169

    Google Scholar 

  • Linnell JDC, Andersen R (1998) Timing and synchrony of birth in a hider species, the roe deer Capreolus capreolus. J Zool (Lond) 244:497–504. doi:10.1111/j.1469-7998.1998.tb00055.x

    Article  Google Scholar 

  • Mason DR (1986) Reproduction in the male warthog Phacochoerus aethiopicus from Zululand, South Africa. S Afr J Zool 21:39–47

    Google Scholar 

  • McHugh MJ (2006) Impact of south pacific circulation variability on East African rainfall. Int J Climatol 26:505–521. doi:10.1002/joc.1257

    Article  Google Scholar 

  • Mduma SAR, Sinclair ARE, Hilborn R (1999) Food regulates the Serengeti wildebeest: a 40-year record. J Anim Ecol 68:1101–1122. doi:10.1046/j.1365-2656.1999.00352.x

    Article  Google Scholar 

  • Millar JS (1977) Adaptive features of mammalian reproduction. Evol Int J Org Evol 31:370–386. doi:10.2307/2407759

    Google Scholar 

  • Miller RF, Hart GH, Cole HG (1942) Fertility in sheep as affected by nutrition during breeding season and pregnancy. Univ Calif Afr Exp Stat Bull 672

  • Mitchell B, Lincoln GA (1973) Conception dates in relation to age and condition in two populations of Red deer in Scotland. J Zool 171:141–152

    Article  Google Scholar 

  • Moe SR, Rutina LP, du Toit JT (2007) Trade-off between resource seasonality and predation risk explains reproductive chronology in impala. J Zool (Lond) 273:237–243. doi:10.1111/j.1469-7998.2007.00319.x

    Article  Google Scholar 

  • Nicholson SE, Entekhabi D (1986) The quasi-periodic behaviour of rainfall variability in Africa and its relationship to the Southern Oscillation. Arch Meteorol Geophys Bioclim Ser A 34:311–348. doi:10.1007/BF02257765

    Article  Google Scholar 

  • Norton-Griffiths M, Herlocker DJ, Pennycuick L (1975) The patterns of rainfall in the Serengeti ecosystem. Afr Wildl J 13:347–374

    Google Scholar 

  • Oftedal OT (1984) Pregnancy and lactation. In: Hudson RJ, White RG (eds) Bioenergetics of wild herbivores. CRC Press, Boca Raton, FL, pp 215–238

    Google Scholar 

  • Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2007) El Niño-Southern Oscillation, rainfall, temperature and Normalized Difference Vegetation Index fluctuations in the Mara-Serengeti ecosystem. Afr J Ecol 46:132–143. doi:10.1111/j.1365-2028.2007.00821.x

    Article  Google Scholar 

  • Ogutu JO, Piepho H-P, Dublin HT, Bhola N, Reid RS (2008) Rainfall influences on ungulate population abundance in the Mara-Serengeti ecosystem. J Anim Ecol 77:814–829. doi:10.1111/j.1365-2656.2008.01392.x

    Article  CAS  PubMed  Google Scholar 

  • Piepho HP, Ogutu JO (2007) Simple state-space models in a mixed model framework. Am Stat 61:224–232. doi:10.1198/000313007X220426

    Article  Google Scholar 

  • Post E (2004) Timing of reproduction in large mammals. In: Schwartz MD (ed) Phenology, an integrative environmental science. Springer, New York, pp 437–449

    Google Scholar 

  • Post E, Bøving PS, Perdersen C, MacArthur MA (2003) Synchrony between caribou calving and plant phenology in depredated and non-depredated populations. Can J Zool 81:1709–1714. doi:10.1139/z03-172

    Article  Google Scholar 

  • Rachlow JL, Bowyer RT (1991) Interannual variation in timing and synchrony of parturition in Dall’s sheep. J Mammal 72:487–492. doi:10.2307/1382131

    Article  Google Scholar 

  • Rodgers WA (1984) Warthog ecology in South east Tanzania. Mammalia 48:327–350

    Article  Google Scholar 

  • Russell DE, Gerhart KL, White RG, Van De Wetering DV (1998) Detection of early pregnancy in caribou: evidence for embryonic mortality. J Wildl Manag 62:1066–1075. doi:10.2307/3802559

    Article  Google Scholar 

  • Rutberg AT (1984) Birth synchrony in American Bison (Bison bison): response to predation or season. J Mammal 65:418–423. doi:10.2307/1381088

    Article  Google Scholar 

  • Rutberg AT (1987) Adaptive hypotheses of birth synchrony in ruminants: an interspecific test. Am Nat 130:692–710. doi:10.1086/284739

    Article  Google Scholar 

  • Rutherford MC (1980) Annual plant production–precipitation relations in arid and semi-arid regions. S Afr J Sci 76:53–56

    Google Scholar 

  • Ryan SJ, Knechtel CV, Getz WM (2007) Ecological cues, gestation length, and birth timing in African buffalo (Syncerus caffer). Behav Ecol 18:635–644. doi:10.1093/beheco/arm028

    Article  Google Scholar 

  • Sadleir RMFS (1969) The ecology of reproduction in wild and domesticated mammals. Methuen, London

    Google Scholar 

  • Saji NS, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    CAS  PubMed  Google Scholar 

  • SAS Institute (2005) SAS system for windows, version 9.1.3. SAS Institute Inc., Cary

    Google Scholar 

  • Sinclair ARE (1995) Population limitation of resident herbivores. In: Sinclair ARE, Arcese P (eds) Serengeti II. Dynamics, management and conservation of an ecosystem. University of Chicago Press, Chicago, pp 194–219

    Google Scholar 

  • Sinclair ARE, Mduma SAR, Arcese P (2000) What determines phenology and synchrony of ungulate breeding in Serengeti? Ecology 81:2100–2111

    Article  Google Scholar 

  • Taber RD, Dassmann RF (1958) The black-tailed deer of the chaparral. Calif. Dept. Fish and Game. Game Bulletin No. 8

  • Talbot LM, Talbot MH (1963) The wildebeest in Western Maasialand, East AfricaWildlife Monograph 12. The Wildlife Society, Washington, D.C.

  • Teer JG, Thomas JW, Walker EA (1965) Ecology and management of white-tailed deer in Llano Basin of Texas. Wildlife Monograph 15. The Wildlife Society, Washington, D.C.

  • Testa JW (2002) Does predation on neonates inherently select for earlier births? J Mammal 83:699–706. doi:10.1644/1545-1542(2002)083<0699:DPONIS>2.0.CO;2

    Article  Google Scholar 

  • Testa JW, Adams GP (1998) Body condition and adjustments to reproductive effort in female moose (Alces alces). J Mammal 79:1345–1354. doi:10.2307/1383026

    Article  Google Scholar 

  • Thomson AM, Thomson W (1949) Lambing in relation to diet of the pregnant ewe. Br J Nutr 2:290–305. doi:10.1079/BJN19480056

    Article  CAS  PubMed  Google Scholar 

  • Verme LJ (1965) Reproduction studies on white-tailed deer. J Wildl Manage 29:74–79. doi:10.2307/3798633

    Article  Google Scholar 

  • Watson RM (1969) Reproduction of wildebeest, Connochetes taurinus albojubatus Thomas, in the Serengeti region, and its significance to conservation. J Reprod Fertil Suppl 6:287–310

    Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401:356–360. doi:10.1038/43848

    Article  CAS  PubMed  Google Scholar 

  • Wittemyer G, Rasmussen HB, Douglas-Hamilton I (2007) Breeding phenology in relation to NDVI variability in free-ranging African elephant. Ecography 30:42–50

    Google Scholar 

Download references

Acknowledgments

The Maasai Mara Ecological Monitoring Program was designed and supervised by Dr. Holly T. Dublin and run by Paul Chara (July 1989–1992), John Naiyoma (1989–1993), Alex Obara (1995–1997), and Charles Matankory (1991–2003), and was funded by the World Wide Fund for Nature and Friends of Conservation. This study was also supported by the National Science Foundation (NSF) Grant Nos: BCS 0709671 and DEB-0342820 and a grant from the Belgian government (DGIC BEL011) to ILRI. We thank the Narok County Council for permission to conduct this study and for providing an office space and accommodation for MMEMP staff. BaseCamp Explorer Ltd also provided an office space during the later stages of the monitoring program. The International Livestock Research Institute (ILRI) and the Alexander von Humboldt Foundation (AvH) supported J.O. during preparation of this paper. The Kenya Meteorological Department and Dr. Kay Holekamp provided additional rainfall data for the Mara Reserve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph O. Ogutu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A (PDF 72 kb)

Appendix B (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogutu, J.O., Piepho, HP., Dublin, H.T. et al. Rainfall extremes explain interannual shifts in timing and synchrony of calving in topi and warthog. Popul Ecol 52, 89–102 (2010). https://doi.org/10.1007/s10144-009-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-009-0163-3

Keywords

Navigation