Skip to main content
Log in

Cottonoid-guided intraoperative ultrasonography in neurosurgery: a proof-of-concept single surgeon case series

  • Original Article
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Ultrasonography was introduced into neurosurgery in the 1950s, but its successful utilization as an intraoperative tool dates from the early 1980s. However, it was not used widely because of limited technology, a lack of specific training, and, most importantly, the concurrent evolution of computerized tomography and magnetic resonance imaging. The intraoperative use of cottonoid patties as acoustical markers was first described in 1984, but the practice did not gain acceptance, and no articles have been published since. Herein, we reconsider the echogenic properties of the surgical cottonoid patty and demonstrate its usefulness with intraoperative ultrasonography (ioUS) in neurosurgical practice as a truly real-time neuronavigation tool. We also discuss its advantages and compare it with other intraoperative image guidance tools. The echogenic properties of the handmade cottonoid patties in various sizes used with ioUS are described. Details of our cottonoid-guided ioUS technique and its advantages with illustrated cases are also described. As an echogenic marker, cottonoid patties can be easily recognized with ioUS. Their usage with ultrasonography provides truly real-time anatomical orientation throughout the surgery, allowing easy access to intraparenchymal pathologies, and precise and safer resection. Cottonoid-guided ioUS helps not only to localize intraparenchymal pathologies but also to delineate the exact surgical trajectory for each type of lesion. Furthermore, it is not affected by brain shift and distortion. Thus, it is a truly real-time, dynamic, cost-effective, and easy-to-use image guidance tool. This technique can be used safely for every intraparenchymal pathology and increases the accuracy and safety of the surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Asgari S, Engelhorn T, Brondics A, Sandalcioglu IE, Stolke D (2003) Transcortical or transcallosal approach to ventricle-associated lesions: a clinical study on the prognostic role of surgical approach. Neurosurg Rev 26:192–197. https://doi.org/10.1007/s10143-002-0239-4

    Article  PubMed  Google Scholar 

  2. Auer LM, Van Velthoven V (1990) Intraoperative ultrasound imaging in neurosurgery: comparison with CT and MRI. In. Springer-Verlag, p 6

  3. Bernays R, Imhof H, Yonekawa Y (2003) Intraoperative imaging in neurosurgery. MRI, CT, ultrasound. Springer-Verlag, Wien

  4. Chandler WF, Knake JE, McGillicuddy JE, Lillehei KO, Silver TM (1982) Intra-operative use of real-time ultrasonography in neurosurgery. J Neurosurg 57:157–163. https://doi.org/10.3171/jns.1982.57.2.0157

    Article  CAS  PubMed  Google Scholar 

  5. Chen KP, Pan YH (1964) Intracerebral ultrasonic exploration. Chin Med J 83:506–510

    CAS  PubMed  Google Scholar 

  6. de Quintana-Schmidt C, Salgado-Lopez L, Aibar-Duran JA, Alvarez Holzapfel MJ, Cortes CA, Alvarado JDP, Rodriguez RR, Teixido JM (2021) Neuronavigated ultrasound in neuro-oncology: a true real-time intraoperative image. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.10.082

    Article  PubMed  Google Scholar 

  7. Dherijha MSA, Waqar M, Palin MS, Bukhari S (2021) Foramen magnum decompression in adults with Chiari type 1 malformation: use of intraoperative ultrasound to guide extent of surgery. Br J Neurosurg. doi:https://doi.org/10.1080/02688697.2021.1981238

  8. Dyck P, Kurze T, Barrows HS (1966) Intra-operative ultrasonic encephalography of cerebral mass lesions. Bull Los Angeles Neurol Soc 31:114–124

    CAS  PubMed  Google Scholar 

  9. Faria Mendez GE, Roa Chacon CJ, Brito Nunez NJ, Zerpa JR (2021) Utility of intraoperative ultrasound in neurosurgery. Braz Neurosurg 40:E113–E119. https://doi.org/10.1055/s-0040-1722243

    Article  Google Scholar 

  10. Ganau M, Ligarotti GK, Apostolopoulos V (2019) Real-time intraoperative ultrasound in brain surgery: neuronavigation and use of contrast-enhanced image fusion. Quant Imaging Med Surg 9:350–358. https://doi.org/10.21037/qims.2019.03.06

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ganau M, Syrmos N, Martin AR, Jiang F, Fehlings MG (2018) Intraoperative ultrasound in spine surgery: history, current applications, future developments. Quant Imaging Med Surg 8:261–267. https://doi.org/10.21037/qims.2018.04.02

    Article  PubMed  PubMed Central  Google Scholar 

  12. Geffen G, Walsh A, Simpson D, Jeeves M (1980) Comparison of the effects of transcortical and transcallosal removal of intraventricular tumors. Brain 103:773–788. https://doi.org/10.1093/brain/103.4.773

    Article  CAS  PubMed  Google Scholar 

  13. Goga C, Türe U (2014) The anterior transcallosal approach to a cerebral aqueduct tumor. Neurosurgery 10:492. https://doi.org/10.1227/neu.0000000000000439

    Article  PubMed  Google Scholar 

  14. Gooding GAW, Edwards MSB, Rabkin AE, Powers SK (1983) Intraoperative real-time ultrasound in the localization of intracranial neoplasms. Radiology 146:459–462. https://doi.org/10.1148/radiology.146.2.6849094

    Article  CAS  PubMed  Google Scholar 

  15. Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F, Lango T, Unsgard G (2000) SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 47:1373–1379. https://doi.org/10.1097/00006123-200012000-00021

    Article  CAS  PubMed  Google Scholar 

  16. Han BK, Babcock DS, Oestreich AE (1984) Sonography of brain-tumors in infants. Am J Roentgenol 143:31–36. https://doi.org/10.2214/ajr.143.1.31

    Article  CAS  Google Scholar 

  17. Harput MV, Gonzalez-Lopez P, Ture U (2014) Three-dimensional reconstruction of the topographical cerebral surface anatomy for presurgical planning with free OsiriX software. Oper Neurosurg 10:426–435. https://doi.org/10.1227/neu.0000000000000355

    Article  Google Scholar 

  18. Harput MV, Parnian Fard A, Türe U (2019) Microneurosurgical removal of a cervical intramedullary tumor via hemilaminoplasty: 3-dimensional operative video. Oper Neurosurg 17:E9. https://doi.org/10.1093/ons/opy297

    Article  Google Scholar 

  19. Harput MV, Türe U (2017) Microneurosurgical removal of a posterior thalamic glioma via posterior interhemispheric subsplenial approach in lateral oblique position. Oper Neurosurg 13:643. https://doi.org/10.1093/ons/opx012

    Article  Google Scholar 

  20. Hata N, Dohi T, Iseki H, Takakura K (1997) Development of a frameless and armless stereotactic neuronavigation system with ultrasonographic registration. Neurosurgery 41:608–613. https://doi.org/10.1097/00006123-199709000-00020

    Article  CAS  PubMed  Google Scholar 

  21. Hernesniemi J, Leivo S (1996) Management outcome in third ventricular colloid cysts in a defined population: a series of 40 patients treated mainly by transcallosal microsurgery. Surg Neurol 45:2–11. https://doi.org/10.1016/0090-3019(95)00379-7

    Article  CAS  PubMed  Google Scholar 

  22. Jeeves MA, Simpson DA, Geffen G (1979) Functional consequences of the transcallosal removal of intra-ventricular tumors. J Neurol Neurosurg Psychiatry 42:134–142. https://doi.org/10.1136/jnnp.42.2.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Keles A, Harput MV, Ture U (2019) Microneurosurgical removal of a globus pallidus tumor with cottonoid-guided intraoperative ultrasonography: 2-dimensional operative video. Oper Neurosurg (Hagerstown) 0:1. doi:https://doi.org/10.1093/ons/opz348

  24. Keles A, Harput MV, Ture U (2019) Pontine cavernous malformation: microsurgery evading the floor of the fourth ventricle. Neurosurg Focus Video 1:V15. https://doi.org/10.3171/2019.7.FocusVid.19186

    Article  Google Scholar 

  25. Kikuchi Y, Uchida R, Tanaka K, Wagai T, Hayashi S (1956) Early cancer diagnosis through ultrasonics. Proceedings Of The Second ICA Congress:170

  26. Knake JE, Chandler WF, McGillicuddy JE, Silver TM, Gabrielsen TO (1982) Intra-operative sonography for brain-tumor localization and ventricular shunt placement. Am J Roentgenol 139:733–738. https://doi.org/10.2214/ajr.139.4.733

    Article  CAS  Google Scholar 

  27. Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J (1993) Ultrasound-controlled neuronavigator-guided brain surgery. J Neurosurg 79:36–42. https://doi.org/10.3171/jns.1993.79.1.0036

    Article  CAS  PubMed  Google Scholar 

  28. La Corte E, Conti A, Tomasello F (2020) Commentary: Microneurosurgical removal of a globus pallidus tumor with cottonoid-guided intraoperative ultrasonography: 2-dimensional operative video. Operative neurosurgery (Hagerstown) 19:E155–E156. https://doi.org/10.1093/ons/opaa009

    Article  Google Scholar 

  29. Martin K (2019) Properties, limitations and artefacts of B-mode images. In: Diagnostic ultrasound: physics and equipment. pp 64–74

  30. Mattei L, Prada F, Marchetti M, Gaviani P, DiMeco F (2017) Differentiating brain radionecrosis from tumour recurrence: a role for contrast-enhanced ultrasound? Acta Neurochir 159:2405–2408. https://doi.org/10.1007/s00701-017-3306-x

    Article  PubMed  Google Scholar 

  31. Miller D (2014) Intraoperative ultrasonography in tumor surgery. Tumors of the central nervous system, vol 13. Springer, New York, NY, pp 123–135

    Google Scholar 

  32. Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Pergolizzi RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–797. https://doi.org/10.1097/00006123-200104000-00019

    Article  CAS  PubMed  Google Scholar 

  33. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1079. https://doi.org/10.1097/00006123-200011000-00008

    Article  CAS  PubMed  Google Scholar 

  34. Pasto ME, Rifkin MD (1984) Intraoperative ultrasound examination of the brain - possible pitfalls in diagnosis and biopsy guidance. J Ultrasound Med 3:245–249. https://doi.org/10.7863/jum.1984.3.6.245

    Article  CAS  PubMed  Google Scholar 

  35. Prada F, Perin A, Martegani A, Aiani L, Solbiati L, Lamperti M, Casali C, Legnani F, Mattei L, Saladino A, Saini M, DiMeco F (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552. https://doi.org/10.1227/neu.0000000000000301

    Article  PubMed  Google Scholar 

  36. Reid MH (1978) Ultrasonic visualization of a cervical cord cystic astrocytoma. Am J Roentgenol 131:907–908. https://doi.org/10.2214/ajr.131.5.907

    Article  CAS  Google Scholar 

  37. Ribas GC (2018) Applied cranial-cerebral anatomy: brain architecture and anatomically oriented microneurosurgery. Cambridge University Press, Cambridge, UK. doi:DOI: https://doi.org/10.1017/9781316661567

  38. Ribas GC, Yasuda A, Ribas EC, Nishikuni K, Rodrigues AJ Jr (2006) Surgical anatomy of microneurosurgical sulcal key points. Oper Neurosurg 59:177–211. https://doi.org/10.1227/01.NEU.0000240682.28616.b2

    Article  Google Scholar 

  39. Roberts DW, Hartov A, Kennedy FE, Miga MI, Paulsen KD (1998) Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43:749–758. https://doi.org/10.1097/00006123-199810000-00010

    Article  CAS  PubMed  Google Scholar 

  40. Serra C, Ture H, Yaltirik CK, Harput MV, Ture U (2020) Microneurosurgical removal of thalamic lesions: surgical results and considerations from a large, single-surgeon consecutive series. Journal of Neurosurgery:1–11. doi:https://doi.org/10.3171/2020.6.Jns20524

  41. Serra C, Türe U (2021) The extreme anterior interhemispheric transcallosal approach for pure aqueduct tumors: surgical technique and case series. Neurosurg Rev. https://doi.org/10.1007/s10143-021-01555-9

    Article  PubMed  Google Scholar 

  42. Sugar O, Uematsu S (1964) The use of ultrasound in the diagnosis of intracranial lesions. Surg Clin-North Am 44:55–64

    Article  CAS  Google Scholar 

  43. Tsutsumi Y, Andoh Y, Inoue N (1982) Ultrasound-guided biopsy for deep-seated brain-tumors. J Neurosurg 57:164–167. https://doi.org/10.3171/jns.1982.57.2.0164

    Article  CAS  PubMed  Google Scholar 

  44. Ture U, Yasargil DCH, Al-Mefty O, Yasargil MG (1999) Topographic anatomy of the insular region. J Neurosurg 90:720–733. https://doi.org/10.3171/jns.1999.90.4.0720

    Article  CAS  PubMed  Google Scholar 

  45. Unal TC, Gulsever CI, Sahin D, Dagdeviren HE, Dolas I, Sabanci PA, Aras Y, Sencer A, Aydoseli A (2021) Versatile use of intraoperative ultrasound guidance for brain puncture. Operative neurosurgery (Hagerstown, Md). doi:https://doi.org/10.1093/ons/opab330

  46. Voorhies RM, Bell WO, Patterson RH, Gamache FW (1984) Cottonoid as an acoustical marker for intraoperative ultrasound scanning - technical note. J Neurosurg 60:438–439. https://doi.org/10.3171/jns.1984.60.2.0438

    Article  CAS  PubMed  Google Scholar 

  47. Voorhies RM, Engel I, Gamache FW, Patterson RH, Fraser RAR, Lavyne MH, Schneider M (1983) Intraoperative localization of subcortical brain-tumors - further experience with B-mode real-time sector scanning. Neurosurgery 12:189–194. https://doi.org/10.1227/00006123-198302000-00010

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Shao Y, Wang J, Wang P, Li X (2008) Small callosal fenestration: anatomical and clinical study. Surg Neurol 70:252–258. https://doi.org/10.1016/j.surneu.2007.06.076

    Article  PubMed  Google Scholar 

  49. Yaşargil MG (1996) Microneurosurgery, vol 4B. In. Georg Thieme Verlag, Stuttgart, pp 24–25

    Google Scholar 

  50. Yaşargil MG (1996) Microneurosurgery, vol 4B. In. Georg Thieme Verlag, Stuttgart, pp 65–68

    Google Scholar 

  51. Zakhary R, Keles GE, Berger MS (1999) Intraoperative imaging techniques in the treatment of brain tumors. Curr Opin Oncol 11:152–156. https://doi.org/10.1097/00001622-199905000-00002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Julie Yamamoto, MA, for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design, AK and UT; draft manuscript preparation, AK; project supervision, UT. All the authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Uğur Türe.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 46643 KB)

Supplementary file2 (MP4 38241 KB)

Supplementary file3 (MP4 53450 KB)

Supplementary file4 (MP4 44954 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keleş, A., Türe, U. Cottonoid-guided intraoperative ultrasonography in neurosurgery: a proof-of-concept single surgeon case series. Neurosurg Rev 45, 2289–2303 (2022). https://doi.org/10.1007/s10143-021-01727-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01727-7

Keywords

Navigation