Skip to main content
Log in

The role of systemic inflammatory cells in meningiomas

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The aim of this review is to describe the inflammatory systemic cell infiltrate and its role in pathophysiology and prognostic implications of meningiomas. Articles from PubMed describing inflammation and immune cells in meningioma were systematically selected and reviewed. Infiltrating inflammatory cells are common in meningiomas and correlate with tumor behavior and peritumoral edema. The immune cell infiltrate mainly comprised macrophages, CD4 + T cells of the Th1 and Th2 subtype, CD8 + cytotoxic T cells, mast cells, and to a lesser degree B cells. The polarization of macrophages to M1 or M2 states, as well as the differentiation of T-helper cells to Th1 or Th2 subsets, is of prognostic value, but whether or not the presence of macrophages is associated with the degree of malignancy of the tumor is controversial. The best documented immunosuppressive and tumor-promoting mechanism is the expression of programmed cell death protein 1 (PD-1/PD-1L) which is found on both tumor cells and tumor-infiltrating immune cells. The immune cell infiltration varies between different meningiomas. It contributes to a microenvironment with potential contradictory effects on tumor growth and edema. The immune mechanisms are potential therapeutic targets provided that their effects can be comprehensively understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Asai J et al (1999) Fluorescence automatic cell sorter and immunohistochemical investigation of CD68-positive cells in meningioma. Clin Neurol Neurosurg 101(4):229–234. https://doi.org/10.1016/S0303-8467(99)00052-9

    Article  CAS  PubMed  Google Scholar 

  2. Atri C, Guerfali FZ, Laouini D (2018) Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci 19(6). https://doi.org/10.3390/ijms19061801

  3. Baker KJ, Houston A, Brint E (2019) IL-1 family members in cancer; two sides to every story. Front Immunol 10:1197. https://doi.org/10.3389/fimmu.2019.01197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baxter DS, Orrego A, Rosenfeld JV, Mathiesen T (2014) An audit of immunohistochemical marker patterns in meningioma. J Clin Neurosci Off J Neurosurg Soc Australas 21(3):421–426

    CAS  Google Scholar 

  5. Bø L, Mørk SJ, Nyland H (1992) An immunohistochemical study of mononuclear cells in meningiomas. Neuropathol Appl Neurobiol 18(6):548–558. https://doi.org/10.1111/j.1365-2990.1992.tb00825.x

  6. Bougnaud S et al (2016) Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget 7(22):31955–31971. https://doi.org/10.18632/oncotarget.7454

    Article  PubMed  PubMed Central  Google Scholar 

  7. Caronni N, Savino B, Bonecchi R (2015) Myeloid cells in cancer-related inflammation. Immunobiology Elsevier GmbH 220(2):249–253. https://doi.org/10.1016/j.imbio.2014.10.001

    Article  CAS  Google Scholar 

  8. Catakovic K et al (2017) T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 15(1):1. https://doi.org/10.1186/s12964-016-0160-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chistiakov DA et al (2017) CD68/macrosialin: not just a histochemical marker, Laboratory investigation; a journal of technical methods and pathology. United States 97(1):4–13. https://doi.org/10.1038/labinvest.2016.116

    Article  CAS  Google Scholar 

  10. Domingues PH et al (2013) Association between inflammatory infiltrates and isolated monosomy 22/del(22q) in meningiomas. PLoS ONE 8(10):1–12. https://doi.org/10.1371/journal.pone.0074798

    Article  CAS  Google Scholar 

  11. Du Z et al (2015) Increased expression of the immune modulatory molecule PDL1 (CD274) in anaplastic meningioma. Oncotarget 6(7):4704–4716. https://doi.org/10.18632/oncotarget.3082

    Article  PubMed  Google Scholar 

  12. Esquenazi Y, Lo VP, Lee K (2017) Critical care management of cerebral edema in brain tumors. J Int Care Med US 32(1):15–24. https://doi.org/10.1177/0885066615619618

    Article  Google Scholar 

  13. Fang L et al (2013) The immune cell infiltrate populating meningiomas is composed of mature, antigen-experienced T and B cells. Neuro Oncol 15(11):1479–1490. https://doi.org/10.1093/neuonc/not110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol US 234(6):8509–8521. https://doi.org/10.1002/jcp.27782

    Article  CAS  Google Scholar 

  15. Fietta P, Giovanni D (no date) The effector T helper cell triade, 102(2009), pp. 61–74

  16. Frerichs KU et al (1990) Platelet-activating factor and progressive brain damage following focal brain injury. J Neurosurg 73(2):223–233. https://doi.org/10.3171/jns.1990.73.2.0223

    Article  CAS  PubMed  Google Scholar 

  17. Grund S, Schittenhelm J, Roser F, Tatagiba M, Mawrin C, Kim YJ, Bornemann A (2009) The microglial/macrophagic response at the tumour-brain border of invasive meningiomas. Neuropathol Appl Neurobiol England 35(1):82–88. https://doi.org/10.1111/j.1365-2990.2008.00960.x

    Article  CAS  Google Scholar 

  18. Han SJ et al (2016) Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. J Neuro-Oncol Springer US 130(3):543–552. https://doi.org/10.1007/s11060-016-2256-0

    Article  CAS  Google Scholar 

  19. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell US 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  Google Scholar 

  20. Hirashima Y et al (1998) Platelet-activating factor and edema surrounding meningiomas. J Neurosurg 88(2):304–307. https://doi.org/10.3171/jns.1998.88.2.0304

    Article  CAS  PubMed  Google Scholar 

  21. Hou J et al (2013) Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus 35(6):1–10. https://doi.org/10.3171/2013.8.FOCUS13301

    Article  Google Scholar 

  22. Hyun-Tak J, Ahmed R, Okazaki T (2010) Role of PD-1 in regulating T-cell immunity. 10.1007/82

  23. Kaba SE et al (1997) The treatment of recurrent unresectable and malignant meningiomas with interferon alpha-2B. Neurosurgery 486(February):271–275. https://doi.org/10.1097/0006123-199702000-00007

    Article  Google Scholar 

  24. Kather JN et al (2017) In silico modeling of immunotherapy and stroma-targeting therapies in human colorectal cancer. Cancer Res US 77(22):6442–6452. https://doi.org/10.1158/0008-5472.CAN-17-2006

    Article  CAS  Google Scholar 

  25. Kato Y et al (2014) Clinicopathological evaluation of cyclooxygenase-2 expression in meningioma: immunohistochemical analysis of 76 cases of low and high-grade meningioma. Brain Tumor Pathol Japan 31(1):23–30. https://doi.org/10.1007/s10014-012-0127-8

    Article  CAS  Google Scholar 

  26. Kimelberg HK (1995) Current concepts of brain edema: review of laboratory investigations. J Neurosurg 83(6):1051–1059. https://doi.org/10.3171/jns.1995.83.6.1051

    Article  CAS  PubMed  Google Scholar 

  27. Kleihues P et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61(3):215–225. https://doi.org/10.1093/jnen/61.3.215

    Article  PubMed  Google Scholar 

  28. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother CII Germany 54(8):721–728. https://doi.org/10.1007/s00262-004-0653-2

    Article  CAS  Google Scholar 

  29. Kumar R et al (2006) Th1/Th2 cytokine imbalance in meningioma, anaplastic astrocytoma and glioblastoma multiforme patients. Oncol Rep 15(6):1513–1516. https://doi.org/10.3892/or.15.6.1513

    Article  CAS  PubMed  Google Scholar 

  30. Lee S, Karas PJ, Hadley CC, Bayley VJC, Khan AB, Jalali A, Sweeney AD, Klisch TJ, Patel AJ (2019) The role of Merlin/NF2 loss in meningioma biology. Cancers (Basel). https://doi.org/10.3390/cancers11111633

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li YD et al (2019) Systemic and local immunosuppression in patients with high-grade meningiomas. Cancer Immunol Immunother Springer Berlin Heidelberg 68(6):999–1009. https://doi.org/10.1007/s00262-019-02342-8

    Article  CAS  Google Scholar 

  32. Lim YS et al (2013) Long term clinical outcomes of malignant meningiomas. Brain Tumor Res Treat 1(2):85–90. https://doi.org/10.14791/btrt.2013.1.2.85

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma X et al (2015) Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Research,4. https://doi.org/10.12688/f1000research.7010.1

  34. Maciel TT, Moura IC, Hermine O (2015) The role of mast cells in cancers. F1000prime Rep 7 9. https://doi.org/10.12703/P7-09

  35. Makino K, Nakamura H, Hide T, Yano S, Kuroda J-I, Iyama K-I, Kuratsu J-I (2012) Fatty acid synthase is a predictive marker for aggressiveness in meningiomas. J Neurooncol 109(2):399–404

    Article  CAS  Google Scholar 

  36. Martinez FO Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment, F1000prime Rep 6 13. https://doi.org/10.12703/P6-13

  37. Matias D et al (2018) Microglia/astrocytes–glioblastoma crosstalk: crucial molecular mechanisms and microenvironmental factors. Front Cell Neurosci 12(August):1–22. https://doi.org/10.3389/fncel.2018.00235

    Article  CAS  Google Scholar 

  38. McGranahan T et al (2019) Current state of immunotherapy for treatment of glioblastoma, Current Treatment Options in Oncology. Curr Treat Opt Oncol 20(3). https://doi.org/10.1007/s11864-019-0619-4

  39. Mirian C, Duun-Henriksen AK, Juratli T et al (2020) Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry 91(4):378–387

    Article  Google Scholar 

  40. Mirian C, Skyrman S, Bartek JJ, Jensen LR, Kihlström L, Förander P, Orrego A, Mathiesen T (2020) The Ki-67 Proliferation index as a marker of time to recurrence in intracranial meningioma. Neurosurgery. https://doi.org/10.1093/neuros/nyaa226

    Article  PubMed  Google Scholar 

  41. Moradi A et al (2008) Pathodiagnostic parameters for meningioma grading. J Clin Neurosci Elsevier Ltd 15(12):1370–1375. https://doi.org/10.1016/j.jocn.2007.12.005

    Article  CAS  Google Scholar 

  42. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737. https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Najafi M et al (2019) Macrophage polarity in cancer: a review. J Cell Biochem US 120(3):2756–2765. https://doi.org/10.1002/jcb.27646

    Article  CAS  Google Scholar 

  45. Ostrom QT et al (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncology 22(12 Suppl 2):iv1–iv96. https://doi.org/10.1093/neuonc/noaa200

    Article  PubMed  PubMed Central  Google Scholar 

  46. Parayath NN, Parikh A, Amiji MM (2018) Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett 18(6):3571–3579. https://doi.org/10.1021/acs.nanolett.8b00689

    Article  CAS  PubMed  Google Scholar 

  47. Perry A et al (1999) “Malignancy” in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer US 85(9):2046–2056. https://doi.org/10.1002/(sici)1097-0142(19990501)85:9%3c2046::aid-cncr23%3e3.0.co;2-m

    Article  CAS  Google Scholar 

  48. Polyzoidis S et al (2015) Mast cells in meningiomas and brain inflammation, Journal of Neuroinflammation. J Neuroinflammation 12(1):1–8. https://doi.org/10.1186/s12974-015-0388-3

    Article  Google Scholar 

  49. Presta I et al (2017) Innate immunity may play a role in growth and relapse of chordoid meningioma. Int J Immunopathol Pharmacol 30(4):429–433. https://doi.org/10.1177/0394632017730241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Preusser M, Brastianos PK, Mawrin C (2018) Advances in meningioma genetics: novel therapeutic opportunities. Nat Rev Neurol England 14(2):106–115. https://doi.org/10.1038/nrneurol.2017.168

    Article  CAS  Google Scholar 

  51. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci Nat Pub Group 15(5):300–312. https://doi.org/10.1038/nrn3722

    Article  CAS  Google Scholar 

  52. Proctor DT et al (2019) Tumor-associated macrophage infiltration in meningioma Neuro-oncol Adv1(1) vdz018. https://doi.org/10.1093/noajnl/vdz018

  53. Rand RW et al (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 6(6):2157–2165

    CAS  PubMed  Google Scholar 

  54. Rapp C et al (2019) Cytotoxic T cells and their activation status are independent prognostic markers in meningiomas. Clin Cancer Res Official J Am Assoc Cancer Res US 25(17):5260–5270. https://doi.org/10.1158/1078-0432.CCR-19-0389

    Article  CAS  Google Scholar 

  55. Reszec J et al (2012) Mast cells evaluation in meningioma of various grades. Folia Histochem Cytobiol 50(4):542–546. https://doi.org/10.5603/FHC.2012.0076

    Article  PubMed  Google Scholar 

  56. Reszec J et al (2013) Evaluation of mast cells and hypoxia inducible factor-1 expression in meningiomas of various grades in correlation with peritumoral brain edema. J Neurooncol 115(1):119–125. https://doi.org/10.1007/s11060-013-1208-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ribatti D (1822) Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochimica et Biophysica Acta - Mol Basis Dis Elsevier BV 1:2–8. https://doi.org/10.1016/j.bbadis.2010.11.010

    Article  CAS  Google Scholar 

  58. Roessler K, Dietrich W, Kitz K (1999) Expression of BCL-2 oncoprotein on tumor cells and tumor-infiltrating lymphocytes (TIL) in meningiomas. Neurosurg Rev 22(4):205–209. https://doi.org/10.1007/s101430050017

    Article  CAS  PubMed  Google Scholar 

  59. Rogers L et al (2015) Meningiomas: knowledge base, treatment outcomes, and uncertainties A RANO review. J Neurosurg 122(1):4–23. https://doi.org/10.3171/2014.7.JNS131644

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rossi ML et al (1988) Immunocytochemical study of the cellular immune response in meningiomas. J Clin Pathol 41(3):314–319. https://doi.org/10.1136/jcp.41.3.314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ruffel B et al (2005) Lymphocytes in cancer development. Bone 23(1):1–7. https://doi.org/10.1038/jid.2014.371

    Article  CAS  Google Scholar 

  62. Sato K et al (1995) Expression of monocyte chemoattractant protein-1 in meningioma. J Neurosurg US 82(5):874–878. https://doi.org/10.3171/jns.1995.82.5.0874

    Article  CAS  Google Scholar 

  63. Shinonaga M et al (1988) Immunohistological evaluation of macrophage infiltrates in brain tumors. Correlation with peritumoral edema. J Neurosurg 68(2):259–265. https://doi.org/10.3171/jns.1988.68.2.0259

    Article  CAS  PubMed  Google Scholar 

  64. Sica A et al (2008) Macrophage polarization in tumour progression. Sem Cancer Biol England 18(5):349–355. https://doi.org/10.1016/j.semcancer.2008.03.004

    Article  CAS  Google Scholar 

  65. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795. https://doi.org/10.1172/JCI59643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Simon S, Labarriere N (2017) PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncoimmunology 7(1):e1364828. https://doi.org/10.1080/2162402X.2017.1364828

    Article  PubMed  PubMed Central  Google Scholar 

  67. Strik HM, Stoll M, Meyermann R (2004) Immune cell infiltration of intrinsic and metastatic intracranial tumours. Anticancer Res 24(1):37–42

    PubMed  Google Scholar 

  68. Tirakotai W et al (2006) Secretory meningioma: immunohistochemical findings and evaluation of mast cell infiltration. Neurosurg Rev 29(1):41–48. https://doi.org/10.1007/s10143-005-0402-9

    Article  PubMed  Google Scholar 

  69. Wang B et al (2016) The role and regulatory mechanism of IL-1β on the methylation of the NF2 gene in benign meningiomas and leptomeninges. Mol Carcinog 55(12):2268–2277. https://doi.org/10.1002/mc.22467

    Article  CAS  PubMed  Google Scholar 

  70. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912. https://doi.org/10.1038/onc.2008.271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu CX et al (2015) Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma. World J Surg Oncol 13(1):1–9. https://doi.org/10.1186/s12957-015-0496-7

    Article  Google Scholar 

  72. Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res US 90:127–156. https://doi.org/10.1016/s0065-230x(03)90004-2

    Article  CAS  Google Scholar 

  73. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xiang W et al (2018) Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun Springer US 9(1). https://doi.org/10.1038/s41467-018-04999-8

  75. Zadka L et al (2017) Association between interleukin-10 receptors and the CD45-immunophenotype of central nervous system tumors: a preliminary study. Anticancer Res 37(10):5777–5783. https://doi.org/10.21873/anticanres.12019

    Article  CAS  PubMed  Google Scholar 

  76. Zhao J et al (2020) Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma. Oncogene Springer US 39(8):1724–1738. https://doi.org/10.1038/s41388-019-1093-y

    Article  CAS  Google Scholar 

  77. Zhao S et al (2015) Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis. PLoS ONE 10(10):e0139598. https://doi.org/10.1371/journal.pone.0139598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation: JRM and JHV drafted the original manuscript and share first authorship. Conceptualization: JRM, JHV, TM, FV, and MZ. Validation: MZ. Supervision: JHV, TM, and FV.

Corresponding author

Correspondence to Jeppe Haslund-Vinding.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors has given their consent.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jeppe Haslund-Vinding and Jens Riis Møller share first authorship.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haslund-Vinding, J., Møller, J.R., Ziebell, M. et al. The role of systemic inflammatory cells in meningiomas. Neurosurg Rev 45, 1205–1215 (2022). https://doi.org/10.1007/s10143-021-01642-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01642-x

Keywords

Navigation