Skip to main content
Log in

Microbeam radiosurgery using synchrotron-generated submillimetric beams: a new tool for the treatment of brain disorders

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Since its advent during the mid-twentieth century, radiosurgery has undergone a steady evolution. Gamma Knife and linear accelerator based systems using rigid frames preceded the development of frameless devices. The present report describes the development of microbeam radiosurgery, a technique which uses submillimetric beams of radiation to treat disease. Typically, the technique is employed using parallel arrays of beams delivered via a high-fluence synchrotron source. Beam widths between 20 and 950 μm have been used with the majority of studies utilizing beam widths less than 100 μm. In addition to its high precision, the technique allows users to take advantage of two unique properties of microbeams. The first is a remarkable tolerance of healthy tissue to microbeams delivered at doses up to several hundred grays, while at the same time, tumors are highly susceptible to the lethal effects of microbeams. Together, these findings allow for a “preferential tumoricidal effect” beyond the typical dose–volume relationship. Although only used in animal experiments so far, we explore the hypothetical clinical role of microbeam radiosurgery which may be feasible in the near future. In addition to the treatment of traditional radiosurgery targets such as malignancies and vascular malformations, microbeams may allow the non-invasive treatment of functional disease such as movement disorders, epilepsy, and mental illness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adam JF, Joubert A, Biston MC, Charvet AM, Peoc'h M, Le Bas JF, Balosso J, Estève F, Elleaume H (2006) Prolonged survival of Fischer rats bearing F98 glioma after iodine-enhanced synchrotron stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 64(2):603–611

    Article  PubMed  CAS  Google Scholar 

  2. Adler JR, Murphy MJ, Chang SD, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44(6):1299–1306

    PubMed  Google Scholar 

  3. Anschel DJ, Foerster B, Yuasa T et al (2005) 9.4 T MRI characterization of a focal lesion in the rat brain induced by interlaced microbeam radiation. Epilepsia 46:S8–S280

    Google Scholar 

  4. Anschel DJ, Romanelli P, Benveniste H et al (2007) Evolution of a focal brain lesion produced by interlaced microplanar X-rays. Minim Invas Neurosurg 50:43–46

    Article  CAS  Google Scholar 

  5. Bencokova Z, Balosso J, Foray N (2008) Radiobiological features of the anti-cancer strategies involving synchrotron X-rays. J Synchrotron Radiat 15(Pt 1):74–85

    PubMed  CAS  Google Scholar 

  6. Benifla M, Otsubo H, Ochi A, Snead OC, Rutka JT (2006) Multiple subpial transections in pediatric epilepsy: indications and outcomes. Childs Nerv Syst 22:992–998

    Article  PubMed  Google Scholar 

  7. Bräuer-Krisch E, Bravin A, Zhang L, Siegbahn E, Stepanek J, Blattmann H, Slatkin DN, Gebbers J-O, Jasmin M, Laissue JA (2005) Characterization of a tungsten/gas multislit collimator (TMSC) for microbeam radiation therapy at the European Synchrotron Radiation Facility. Rev Sci Instrum 76:064303

    Article  Google Scholar 

  8. Bräuer-Krisch E, Requardt H, Brochard T, Berruyer G, Renier M, Laissue JA, Bravin A (2009) New technology enables high precision multislit collimators for microbeam radiation therapy. Rev Sci Instrum 80(7):074301

    Article  PubMed  Google Scholar 

  9. Bräuer-Krisch E, Requardt H, Regnard P, Corde S, Siegbahn E, Leduc G, Brochard T, Blattmann H, Laissue J, Bravin A (2005) New irradiation geometry for microbeam radiation therapy. Phys Med Biol 50:3103–3111

    Article  PubMed  Google Scholar 

  10. Corde S, Balosso J, Elleaume H, Renier M, Joubert A, Biston MC, Adam JF, Charvet AM, Brochard T, Le Bas JF, Estève F, Foray N (2003) Synchrotron photoactivation of cisplatin elicits an extra number of DNA breaks that stimulate RAD51-mediated repair pathways. Cancer Res 63(12):3221–3227

    PubMed  CAS  Google Scholar 

  11. Curtis HJ (1967) The use of a deuteron microbeam for simulating the biological effects of heavy cosmic-ray particles. Radiat Res Suppl 7:250–257

    Article  PubMed  CAS  Google Scholar 

  12. Curtis HJ (1967) The interpretation of microbeam experiments for manned space flight. Radiat Res Suppl 7:258–264

    Article  PubMed  CAS  Google Scholar 

  13. De Stasio G, Rajesh D, Ford JM, Daniels MJ, Erhardt RJ, Frazer BH, Tyliszczak T, Gilles MK, Conhaim RL, Howard SP, Fowler JF, Estève F, Mehta MP (2006) Motexafin-gadolinium taken up in vitro by at least 90% of glioblastoma cell nuclei. Clin Cancer Res 12(1):206–213

    Article  PubMed  Google Scholar 

  14. Dilmanian FA, Morris GM, Le Duc G, Huang X, Ren B, Bacarian T, Allen TC, Kalef-Ezra J, Orion I, Shivaprasad HL (2001) Response of avian embryonic brain to spatially segmented X-ray microbeams. Cell Mol Biol 47:485–494

    PubMed  CAS  Google Scholar 

  15. Dilmanian FA, Button TM, Le Duc G, Zhong N, Peña LA, Smith JAL, Martinez SR, Bacarian T, Tammam J, Rosen EM (2002) Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro Oncol 4:26–38

    PubMed  Google Scholar 

  16. Dilmanian FA, Morris GM, Zhong N et al (2003) Murine EMT-6 carcinoma: high therapeutic efficacy of microbeam radiation therapy. Radiat Res 159:632–641

    Article  PubMed  CAS  Google Scholar 

  17. Dilmanian FA, Zhong Z, Bacarian T et al (2006) Interlaced X-ray microplanar beams: a radiosurgery approach with clinical potential. PNAS 104(25):9709–9714

    Article  Google Scholar 

  18. Dilmanian FA, Romanelli P, Zhong Z et al (2008) Microbeam radiation therapy: tissue dose penetration and BANG-gel dosimetry of thick-beams' array interlacing. Eur J Radiol 68S:S129–S136

    Article  Google Scholar 

  19. Goodman M (1990) Gamma knife radiosurgery: current status and review. S Med J 83(5):551–554

    Article  CAS  Google Scholar 

  20. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  PubMed  CAS  Google Scholar 

  21. Joel DD, Fairchild RG, Laissue JA et al (1990) Boron neutron capture therapy of intracerebral rat gliosarcomas. PNAS 87:9808–9812

    Article  PubMed  CAS  Google Scholar 

  22. Köhler A (1909) Une nouvelle méthode permettant de faire agir, dans la profondeur des tissus, de hautes doses de rayons Roentgen et un moyen nouveau de protection contre les radiodermites. Ann Électrobiologie Radiol 12:661–664

    Google Scholar 

  23. Laissue JA, Geiser G, Spanne PO, Dilmanian FA, Gebbers JO, Geiser M, Wu XY, Makar MS, Micca PL, Nawrocky MM, Slatkin DN (1998) Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays. Int J Cancer 78:654–660

    Article  PubMed  CAS  Google Scholar 

  24. Laissue JA, Blattmann H, Di Michiel M, Slatkin DN, Lyubimova N, Guzman R, Zimmermann W, Birrer S, Bley T, Kircher P et al (2001) The weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology. Proc SPIE 4508:65–73

    Article  Google Scholar 

  25. Laissue JA, Blattmann H, Wagner HP et al (2007) Prospects for microbeam radiation therapy of brain tumours in children to reduce neurological sequelae. Dev Med Child Neur 49:577–581

    Article  CAS  Google Scholar 

  26. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chir Scand 102:316–319

    PubMed  CAS  Google Scholar 

  27. Leksell L (1968) Cerebral radiosurgery. I. Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595

    PubMed  CAS  Google Scholar 

  28. Miura M, Blattmann H, Brauer-Krisch E, Bravin A, Hanson AL, Nawrocky MM, Micca PL, Slatkin DN, Laissue JA (2006) Radiosurgical palliation of aggressive murine SCCVII squamous cell carcinomas using synchrotron-generated X-ray microbeams. Br J Radiol 79(937):71–75

    Article  PubMed  CAS  Google Scholar 

  29. Moskvin V, Timmerman R, DesRosiers C et al (2004) Monte Carlo simulation of the Leksell Gamma Knife. II. Effects of heterogeneous versus homogeneous media for stereotactic radiosurgery. Phys Med Biol 49(21):4879–4895

    Article  PubMed  Google Scholar 

  30. Prezado Y, Renier M, Bravin A (2009) A new method of creating minibeam patterns for synchrotron radiation therapy: a feasibility study. J Synchrotron Rad 16:582–586

    Article  Google Scholar 

  31. Prezado Y, Thengumpallil S, Renier M, Bravin A (2009) X-ray energy optimization in minibeam radiation therapy. Med Phys 36(11):4897–4902

    Article  PubMed  CAS  Google Scholar 

  32. Rahman M, Murad GJ, Bova F, Friedman WA, Mocco J (2009) Stereotactic radiosurgery and the linear accelerator: accelerating electrons in neurosurgery. Neurosurg Focus 27(3):E13

    Article  PubMed  Google Scholar 

  33. Reidy MA, Schwartz SM (1981) Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium. Lab Invest 44(4):301–308

    PubMed  CAS  Google Scholar 

  34. Regnard P, Le Duc G, Brauer-Krisch E, Tropres I, Siegbahn EA, Kusak A, Clair C, Bernard H, Dallery D, Laissue JA, Bravin A (2008) Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar X-ray beams from asynchrotron: balance between curing and sparing. Phys Med Biol 53:861–878

    Article  PubMed  Google Scholar 

  35. Romanelli P, Adler JR (2008) Image-guided robotic radiosurgery—a new approach for noninvasive ablation of spinal lesions. Nat Clin Pract Oncol 5(7):405–414

    Article  PubMed  Google Scholar 

  36. Schültke E, Juurlink BH, Ataelmannan K, Laissue J, Blattmann H, Brauer-Krisch E, Bravin A, Minczewska J, Crosbie J, Taherian H, Frangou E, Wysokinsky T, Chapman LD, Griebel R, Fourney D (2008) Memory and survival after microbeam radiation therapy. Eur J Radiol 68S:S142–S146

    Article  Google Scholar 

  37. Serduc R, van de Looij Y, Francony G et al (2008) Characterization and quantification of cerebral edema induced by synchrotron X-ray microbeam radiation therapy. Phys Med Biol 53:1153–1166

    Article  PubMed  Google Scholar 

  38. Serduc R, Bräuer-Krisch E, Bouchet A, Renaud L, Brochard T, Bravin A, Laissue JA, Le Duc G (2009) First trial of spatial and temporal fractionations of the delivered dose using synchrotron microbeam radiation therapy. J Synchrotron Radiat 16(Pt 4):587–590

    Article  PubMed  Google Scholar 

  39. Siegbahn EA, Bräuer-Krisch E, Bravin A, Nettelbeck H, Lerch MLF, Rosenfeld AB (2009) MOSFET dosimetry with high spatial resolution in intense synchrotron-generated X-ray microbeams. Med Phys 36(4):1128–1137

    Article  PubMed  CAS  Google Scholar 

  40. Slatkin DN, Spanne P, Dilmanian FA, Sandborg M (1992) Microbeam radiation therapy. Med Phys 19:1395–1400

    Article  PubMed  CAS  Google Scholar 

  41. Slatkin DN, Spanne P, Dilmanian FA, Gebbers JO, Laissue JA (1995) Subacute neuropathological effects of microplanar beams of X-rays from a synchrotron wiggler. Proc Natl Acad Sci USA 92:8783–8787

    Article  PubMed  CAS  Google Scholar 

  42. Smilowitz HM, Blattmann H, Brauer-Krisch E (2006) Synergy of gene-mediated immunoprophylaxis and microbeam radiation therapy for advanced intracerebral rat 9L gliosarcomas. J Neuro Oncol 78:135–143

    Article  CAS  Google Scholar 

  43. Spiga J, Siegbahn EA, Bräuer-Krisch E, Randaccio P, Bravin A (2007) The GEANT4 toolkit for microdosimetry calculations: application to microbeam radiation therapy “MRT”. Med Phys 34(11):4322–4330

    Article  PubMed  CAS  Google Scholar 

  44. Zeman W, Curtis HJ, Gebhard KL, Haymaker W (1959) Tolerance of mouse brain tissue to high energy deuterons. Science 130:1760–1761

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Michel Renier (ESRF) for the kind production of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Anschel.

Additional information

Comments

Ekkehard M. Kasper, Bosten, USA

In this paper, the authors present the fascinating topic of precise radiosurgery using synchrotron-generated submillimetric beams as a new tool for the treatment of brain disorders. This review deals with the currently available experimental data from literature reporting on the investigative use of such a radiation technique. The intent is to review a topic rather unfamiliar to most clinicians.

This endeavour can be welcomed as an excellent idea, since the available body of literature warrants this project and the authors lucidly present the relevant publications in the field. Before the authors go into detail, a general section addressing the conceptual design/technique is included. Technology of beam generation, geometry, homogeneity, energy and dosing considerations are reviewed. Observed histopathological changes as seen and expected from the dose delivered are shown and the authors report on the experimental options to follow such lesions with modern high-resolution MRI imaging.

The most appealing part of the speculative future applications is in the precision of applying this technique to neurosurgery of superficial lesion (e.g. functional subpial transections) and eventually also to deep-seated lesions (e.g. STN) or other targets in psychiatric settings in which circuitry and hence targeting is currently being worked out. Further studies of the biological effects of this technique are greatly needed to demonstrate the specific tissue response and its preferential tumoricidal effect and to enrich the armatorium of our treatment options. The authors should be congratulated for bringing the results of this technology to the focus of attention of interested readers.

Michael W. McDermott, San Francisco, USA

The article by Anschel et al. presents the concept of microbeam radiation therapy using synchrotron sources. It is another example of the wonder of science potentially providing another window to “improving the therapeutic ratio” when it comes to treating tumors. Since there is no primate or human data available yet, the promise of a benefit remains just that. In the past, we have heard of, and subsequently tried, many different techniques over the past 25 years to improve the results with the use of irradiation techniques in treating brain tumors. I believe we have reached our limit with this “physical” treatment for malignant tumors and the only trade-off for success in terms of tumor control using radiation therapy is radiation necrosis. Many times (e.g. solitary brain metastases, glial tumors in non-eloquent cortex), the trade-off is worth it for patients and families but very few of these long-term radiation therapy survivors live a normal life.

Apart from the limited availability of highly specialized treatment sites, I agree with the authors that another major hurdle before being able to treat patients is the method for patient immobilization and positioning in the microbeam field. System accuracy is one thing; application accuracy is another, which involves the sum of errors of all the steps in the treatment process from imaging, targeting, positioning to delivering the energy. That being said, I see this technique having potential some day for highly specialized functional procedures where the microbeam paths may be used to interrupt association fibers or disturb tiny nuclei without an implanted electrode. I wish all the investigators in microbeam radiation therapy success with their future investigations. I would be delighted to be proven wrong some day!

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anschel, D.J., Bravin, A. & Romanelli, P. Microbeam radiosurgery using synchrotron-generated submillimetric beams: a new tool for the treatment of brain disorders. Neurosurg Rev 34, 133–142 (2011). https://doi.org/10.1007/s10143-010-0292-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-010-0292-3

Keywords

Navigation