Skip to main content

Advertisement

Log in

Dendritic-cell- and peptide-based vaccination strategies for glioma

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Despite advances in radiation and chemotherapy along with surgical resectioning, the prognosis of patients with malignant glioma is poor. Therefore, the development of a new treatment modality is extremely important. There are increasing reports demonstrating that systemic immunotherapy using dendritic cells and peptide is capable of inducing an antiglioma response. This review highlights dendritic-cell- and peptide-based immunotherapy for glioma patients. Dendritic-cell- and peptide-based immunotherapy strategies appear promising as an approach to successfully induce an antitumor immune response and increase survival in patients with glioma. Dendritic cell- and peptide-based therapy of glioma seems to be safe and without major side effects. There are several types of glioma; so to achieve effective therapy, it may be necessary to evaluate the molecular genetic abnormalities in individual patient tumors and design novel immunotherapeutic strategies based on the pharmacogenomic findings. Here, in this review, recent advances in dendritic-cell- and peptide-based immunotherapy approaches for patients with gliomas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barratt-Boyes SM, Zimmer MI, Harshyne LA, Meyer EM, Watkins SC, Capuano S 3rd, Murphey-Corb M, Falo LD Jr, Donnenberg AD (2000) Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J Immunol 164:2487–2495

    PubMed  CAS  Google Scholar 

  2. Bax M, García-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ, Hernández G, Crocker PR, Leffler H, Head SR, Haslam SM, Dell A, van Kooyk Y (2007) Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J Immunol 179(12):8216–8224

    PubMed  CAS  Google Scholar 

  3. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, Silver JS, Stark PC, Macdonald DR, Ino Y, Ramsay DA, Louis DN (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90(19):1473–1479

    Article  PubMed  CAS  Google Scholar 

  4. Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918

    Article  PubMed  CAS  Google Scholar 

  5. de Vries IJ, Lesterhuis WJ, Scharenborg NM, Engelen LP, Ruiter DJ, Gerritsen MJ, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJ (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091–5100

    PubMed  Google Scholar 

  6. Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 100(1):174–177

    Article  PubMed  CAS  Google Scholar 

  7. Dietz AB, Bulur PA, Knutson GJ, Matasić R, Vuk-Pavlović S (2000) Maturation of human monocyte-derived dendritic cells studied by microarray hybridization. Biochem Biophys Res Commun 275(3):731–738

    Article  PubMed  CAS  Google Scholar 

  8. Grabbe S, Kämpgen E, Schuler G (2000) Dendritic cells: multi-lineal and multi functional. Immunol Today 21:431–433

    Article  PubMed  CAS  Google Scholar 

  9. Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P, Sutmuller RP, Adema GJ (2007) CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105

    Article  PubMed  CAS  Google Scholar 

  10. Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ, Okada H (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7:717–722

    Article  PubMed  CAS  Google Scholar 

  11. Harada M, Ishihara Y, Itoh K, Yamanaka R (2007) Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in HLA-A24+ glioma patients. Oncol Rep 17:629–636

    PubMed  CAS  Google Scholar 

  12. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  PubMed  CAS  Google Scholar 

  13. Imaizumi T, Kuramoto T, Matsunaga K, Shichijo S, Yutani S, Shigemori M, Oizumi K, Itoh K (1999) Expression of the tumor-rejection antigen SART1 in brain tumors. Int J Cancer 83:760–764

    Article  PubMed  CAS  Google Scholar 

  14. Itoh K, Yamada A (2006) Personalized peptide vaccines: a new therapeutic modality for cancer (review). Cancer Sci 97:970–976

    Article  PubMed  CAS  Google Scholar 

  15. Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, Hashimoto N, Maruno M, Elisseeva OA, Shirakata T, Kawakami M, Oji Y, Nishida S, Ohno S, Kawase I, Hatazawa J, Nakatsuka S, Aozasa K, Morita S, Sakamoto J, Sugiyama H, Yoshimine T (2008) Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg 108(5):963–971

    Article  PubMed  CAS  Google Scholar 

  16. Janeway CA, Shlomchik MJ, Travers P, Walport M (2004) Using the immune response to attack tumors. In: Janeway CA, Shlomchik MJ, Travers P, Walport J (eds) Immunobiology, 6th edn. Garland Science, New York, pp 630–642

    Google Scholar 

  17. Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344

    Article  PubMed  CAS  Google Scholar 

  18. Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, Kufe DW, Ohno T (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459

    Article  PubMed  CAS  Google Scholar 

  19. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728

    Article  PubMed  CAS  Google Scholar 

  20. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101:781–786

    Article  PubMed  CAS  Google Scholar 

  21. Kuramoto T (1997) Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J 44:43–51

    PubMed  CAS  Google Scholar 

  22. Kurapad SN (1995) Tumor antigens in astrocytic gliomas. Glia 15:244–256

    Article  Google Scholar 

  23. Lallier TE (1991) Cell lineage and cell migration in the neural crest. Ann N Y Acad Sci 615:158–171

    Article  PubMed  CAS  Google Scholar 

  24. Lipscomb MF, Masten BJ (2002) Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130

    PubMed  CAS  Google Scholar 

  25. Liu G, Yu JS, Zeng G, Yin D, Xie D, Black KL, Ying H (2004) AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother 27:220–226

    Article  PubMed  CAS  Google Scholar 

  26. Liu G, Akasaki Y, Khong HT, Wheeler CJ, Das A, Black KL, Yu JS (2005) Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 24:5226–5234

    Article  PubMed  CAS  Google Scholar 

  27. Liu G, Black KL, Yu JS (2006) Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 5:233–247

    Article  PubMed  CAS  Google Scholar 

  28. Liau LM, Prins RM, Odesa SK, Yang MY, Lin MS, Khan-Farooqi H, Soto H, Lai A, Bosch M, Boynton A, Cloughesy TF (2007) Dendritic cell vaccination in combination with TLR-7 agonist, imiquiod following radio-chemotherapy for newly diagnosed glioblastoma. Proc Am Soc Clin Oncol 25:2021

    Google Scholar 

  29. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL, Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353(19):2012–2024

    Article  PubMed  CAS  Google Scholar 

  30. Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Tsuda N, Tanaka S, Shomura H, Katagiri K, Rikimaru T, Shichijo S, Kamura T, Hashimoto T, Shirouzu K, Yamada A, Todo S, Itoh K, Yamana H (2004) Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing peptide-specific cellular responses. Clin Cancer Res 10:929–937

    Article  PubMed  CAS  Google Scholar 

  31. Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, Katagiri K, Nakagawa M, Muto A, Okouchi S, Isomoto H, Shirouzu K, Yamana H, Itoh K (2001) Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination of SART3 peptides. Clin Cancer Res 7:3950–3962

    PubMed  CAS  Google Scholar 

  32. Murayama K, Kobayashi T, Imaizumi T, Matsunaga K, Kuramoto T, Shigemori M, Shichijo S, Itoh K (2000) Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J Immunother 23:511–518

    Article  PubMed  CAS  Google Scholar 

  33. Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, Watnick RS, Straume O, Akslen LA, Folkman J, Almog N (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    Article  PubMed  Google Scholar 

  34. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate pulsed dendritic cells. Nat Med 4:328–332

    Article  PubMed  CAS  Google Scholar 

  35. Okano F, Storkus WJ, Chambers WH, Pollack IF, Okada H (2002) Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clin Cancer Res 8:2851–2855

    PubMed  CAS  Google Scholar 

  36. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  37. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  38. Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JE, Kühl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sörensen N, Opitz A, Van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662

    PubMed  CAS  Google Scholar 

  39. Sahin U, Koslowski M, Türeci O, Eberle T, Zwick C, Romeike B, Moringlane JR, Schwechheimer K, Feiden W, Pfreundschuh M (2000) Expression of cancer testis genes in human brain tumors. Clin Cancer Res 6:3916–3922

    PubMed  CAS  Google Scholar 

  40. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  41. Sampson JH, Archer GE, Bigner DD, Davis T, Friedman HS, Keler T, Mitchell DA, Reardon DA, Sawaya R, Heimberger AB (2008) Effect of EGFRvIII-targeted vaccine (CDX-110) on immune response and TTP when given with simultaneous standard and continuous temozolomide in patients with GBM. Proc Am Soc Clin Oncol 26:2011

    Google Scholar 

  42. Sasaki M, Nakahira K, Kawano Y, Katakura H, Yoshimine T, Shimizu K, Kim SU, Ikenaka K (2001) MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma. Cancer Res 61:4809–4814

    PubMed  CAS  Google Scholar 

  43. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh JJ, Rich JN (2007) Molecularly targeted therapy for malignant glioma. Cancer 110(1):13–24

    Article  PubMed  Google Scholar 

  44. Scarcella DL (1999) Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin Cancer Res 5:335–341

    PubMed  CAS  Google Scholar 

  45. Schneider T, Sailer M, Ansorge S, Firsching R, Reinhold D (2006) Increased concentrations of transforming growth factor beta1 and beta2 in the plasma of patients with glioblastoma. J Neurooncol 79:61–65

    Article  PubMed  CAS  Google Scholar 

  46. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  47. Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D, Bauer H, Kiessling M, Kunze S, Schirrmacher V, Herold-Mende C (2004) Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol 22:4272–4281

    Article  PubMed  Google Scholar 

  48. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomized trials. Lancet 359:1011–1018

    Article  PubMed  CAS  Google Scholar 

  49. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  50. Tsuda N, Mochizuki K, Harada M, Sukehiro A, Kawano K, Yamada A, Ushijima K, Sugiyama T, Nishida T, Yamana H, Itoh K, Kamura T (2004) Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancers. J Immunother 27:60–72

    Article  PubMed  CAS  Google Scholar 

  51. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  52. Ueda R, Iizuka Y, Yoshida K, Kawase T, Kawakami Y, Toda M (2004) Identification of a human glioma antigen, SOX6, recognized by patients’ sera. Oncogene 23:1420–1427

    Article  PubMed  CAS  Google Scholar 

  53. Ueda R, Yoshida K, Kawase T, Kawakami Y, Toda M (2007) Preferential expression and frequent IgG responses of a tumor antigen, SOX5, in glioma patients. Int J Cancer 120:1704–1711

    Article  PubMed  CAS  Google Scholar 

  54. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  55. Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617

    Article  PubMed  CAS  Google Scholar 

  56. Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10:5316–5326

    Article  PubMed  CAS  Google Scholar 

  57. Wischhusen J, Friese MA, Mittelbronn M, Meyermann R, Weller M (2005) HLA-E protects glioma cells from NKG2D-mediated immune responses in vitro: implications for immune escape in vivo. J Neuropathol Exp Neurol 64(6):523–528

    PubMed  CAS  Google Scholar 

  58. Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M, Kuramoto T, Obata Y, Komatsu N, Arima Y, Yamada A, Shigemori M, Itoh K, Tanaka R (2005) Immunological evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 11:5900–5911

    Article  PubMed  CAS  Google Scholar 

  59. Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  PubMed  CAS  Google Scholar 

  60. Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  PubMed  CAS  Google Scholar 

  61. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    PubMed  CAS  Google Scholar 

  62. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  63. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, Black KL, Yu JS (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuya Yamanaka.

Additional information

Comments

Patrick Roth, Michael Weller, Zurich, Switzerland

Malignant gliomas remain a major challenge in the field of neuro-oncology. Despite multimodal therapy, including surgical resection, radiotherapy, and chemotherapy along with the identification of predictive markers for response to treatment such as the epigenetic silencing of the O6-methylguanine-DNA methyltransferase (MGMT) gene, the prognosis for the affected patients has only been slightly improved. Novel therapeutic approaches include targeted therapies such as the administration of small molecules or monoclonal antibodies that inhibit their target specifically. Exquisite specificity is also one of the hallmarks of the immune system which is therefore regarded as a potential and extremely precise weapon against tumors. The various alterations that are expressed by malignant glioma cells may, in general, provide antigenic targets for recognition by the immune system. However, as proven by the clinical course, gliomas hide from the immune system and further avoid immune attack by various immunosuppressive mechanisms. Harnessing the immune system against these tumors by overcoming such obstacles may therefore be a promising therapeutic approach.

Here, the author provides a detailed overview on dendritic cell (DC)- and peptide-based immunotherapeutic strategies, important pitfalls, and an overview on future directions. DC and peptide vaccination have entered the clinic within the last 10 years. Until today, the general experience with such therapeutic approaches has shown excellent tolerability and immune responses against the vaccine but only few favorable clinical responses. The disappointing results of these studies have probably several reasons, including a lack of immunogenicity of tumor cells, inadequate adjuvants, or too low levels of antigens of value. Additionally, there might be tumor cells that are particularly resistant to an attack by the immune system. With the identification of tumor-initiating cells with stem cell properties within gliomas, a population of cells has been identified that may contribute to this immunoresistance. These “stem-like cells” may also explain the inevitable recurrence of gliomas and define these cells as novel targets to overcome the resistance to conventional and immunotherapy in this disease. Based on these novel insights of glioma biology, future immunotherapeutic strategies against malignant gliomas targeting specifically glioma-initiating cells might be more successful than previous approaches. The optimization of vaccination protocols includes further steps such as the selection of “personalized” peptides and a modulation of tumor-associated immunosuppression. Given these considerations, one can optimistically await future immunotherapeutic clinical trials for glioma patients.

Jun Yoshida, Nagoya, Japan

Malignant gliomas remain untreatable and lethal despite the extensive application of surgical excision and additional radiotherapy and/or chemotherapy.

Therefore, various immunotherapy approaches are being explored and appear promising as new therapeutic methods. Immunotherapy for human tumors has been proposed based on the finding that CD8+ cytotoxic T lymphocytes (CTLs) are capable of effective recognition and destruction of tumor cells.

Consequently, much attention has been paid to the identification and characterization of glioma-associated antigens that may elicit strong and highly glioma-specific immune reactions. This review article focuses on DC-based immunotherapeutic approaches. It was of particular interest to read the “Dendritic cells in tumor immunology” section, in which the author describes recent findings on the role of DCs on tumor immunology.

Recently, new subsets of DCs with diverse function have been identified.

Not only that glioma-associated antigens or peptides that elicit stronger immune response should be identified, also, more comprehensive understanding of DCs should be crucial in order to improve the efficacy of immunotherapy toward gliomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, R. Dendritic-cell- and peptide-based vaccination strategies for glioma. Neurosurg Rev 32, 265–273 (2009). https://doi.org/10.1007/s10143-009-0189-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-009-0189-1

Keywords

Navigation