Skip to main content
Log in

Analysis of pituitary transcriptomics indicates that lncRNAs are involved in the regulation of sheep estrus

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Seasonal estrus is a key factor limiting animal fertility, and understanding the molecular mechanisms that regulate animal estrus is important for improving animal fertility. The pituitary gland, which is the most important endocrine gland in mammals, plays an important role in regulating the physiological processes such as growth, development, and reproduction of animals. Here, we used RNA-seq technology to study the expression profile of lncRNAs in the anterior pituitary of sheep during estrus and anestrus. In this study, we identified a total of 995 lncRNAs, of which 335 lncRNAs were differentially expressed in two states (including 38 up-regulated and 297 down-regulated lncRNAs). RT-qPCR verified the expression levels of several lncRNAs. Target predictive analysis revealed that these lncRNAs can act in cis or trans and regulate the expression of genes involved in the regulation of sheep estrus. Target gene enrichment analysis of differentially expressed lncRNAs indicates that these lncRNAs can regulate sheep estrus by regulating hormone metabolism and energy metabolism. Through our research, we provide the expression profile of lncRNAs in the pituitary of sheep, which provides a valuable resource for further understanding of the genetic regulation of seasonal estrus in sheep from the perspective of lncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from NCBI Sequence Read Archive (SRA) database under accession number PRJNA548034 (http://www.ncbi.nlm.nih.gov/sra).

References

  • Ahmed S, Rekha RS, Ahsan KB, Doi M, Grandér M, Roy AK, Ekström EC, Wagatsuma Y, Vahter M, Raqib R (2013) Arsenic exposure affects plasma insulin-like growth factor 1 (igf-1) in children in rural Bangladesh. PLoS One 8:e81530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson LL, Jeftinija S, Scanes CG (2004) Growth hormone secretion: molecular and cellular mechanisms and in vivo approaches. Exp Biol Med 229:291–302

    Article  CAS  Google Scholar 

  • Bakhtiarizadeh MR, Hosseinpour B, Arefnezhad B, Shamabadi N, Salami SA (2016) In silico prediction of long intergenic non-coding RNAs in sheep. Genome 59:263–275

    Article  CAS  PubMed  Google Scholar 

  • Berriman SJ, Wade GN, Blaustein JD (1992) Expression of Fos-like proteins in gonadotropin-releasing hormone neurons of Syrian hamsters: effects of estrous cycles and metabolic fuels. Endocrinology 131:2222–2228

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Q, Zhou B, Xu F, Chen R, Shen C, Liang T, Li Y, Schinckel AP (2017) Genome-wide differential mRNA expression profiles in follicles of two breeds and at two stages of estrus cycle of gilts. Sci Rep 7:5052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deniz E, Erman B (2017) Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genomics 17:135–143

    Article  CAS  PubMed  Google Scholar 

  • Di R, He J, Song S, Tian D, Liu Q, Liang X, Ma Q, Sun M, Wang J, Zhao W, Cao G, Wang J, Yang Z, Ge Y, Chu M (2014) Characterization and comparative profiling of ovarian microRNAs during ovine anestrus and the breeding season. BMC Genomics 15:899

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A (2007) The expanding RNA polymerase III transcriptome. Trends Genet 23:614–622

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  Google Scholar 

  • Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Etgen AM, González-Flores O, Todd BJ (2006) The role of insulin-like growth factor-I and growth factor-associated signal transduction pathways in estradiol and progesterone facilitation of female reproductive behaviors. Front Neuroendocrinol 27:363–375

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Li F, Wang F, Zhang G, Pang J, Ren C, Zhang T, Yang H, Wang Z, Zhang Y (2018) Genome-wide differential expression profiling of mRNAs and lncRNAs associated with prolificacy in Hu sheep. Biosci Rep 38:BSR20171350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaiti F, Fernandez-Valverde SL, Nakanishi N, Calcino AD, Yanai I, Tanurdzic M, Degnan BM (2015) Dynamic and widespread lncRNA expression in a sponge and the origin of animal complexity. Mol Biol Evol 32:2367–2382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Ye J, Yang C, Luo L, Liu Y, Ding J, Zhang Y, Ling Y, Huang W, Zhang X, Zhang K, Li X, Zhou J, Fang F, Cao Z (2018) RNA-seq analysis of lncRNA-controlled developmental gene expression during puberty in goat & rat. BMC Genet 19:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Simth P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray HCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34

    Article  CAS  PubMed  Google Scholar 

  • Guenzl PM, Barlow DP (2012) Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol 9:731–741

    Article  CAS  PubMed  Google Scholar 

  • Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol MJ, Gnirke A, Nusbaum C, Rinn JL, Lander ES, Regev A (2010) Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu AH, Lum MA, Shim KS, Frederick PJ, Morrison CD, Chen B, Lele SM, Sheinin YM, Daikoku T, Dey SK, Leone G, Black AR, Black JD (2018) Crosstalk between PKCα and PI3K/AKT signaling is tumor suppressive in the endometrium. Cell Rep 24:655–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Su C, Jiang M, Shen Y, Shi A, Zhao F, Chen RD, Shen Z, Bao JJ, Tang W (2016) Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3. Biochem Biophys Res Commun 471:290–295

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knapik J, Ropka-Molik K, Pieszka M (2017) Genetic and nutritional factors determining the production and quality of sheep meat–a review. Ann Anim Sci 17:23–40

    Article  Google Scholar 

  • Kommadath A, te -Pas MF, Smits MA (2013) Gene coexpression network analysis identifies genes and biological processes shared among anterior pituitary and brain areas that affect estrous behavior in dairy cows. J Dairy Sci 96:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    Article  PubMed  PubMed Central  Google Scholar 

  • Korzekwa A, Murakami S, Wocławek-Potocka I, Bah MM, Okuda K, Skarzynski DJ (2008) The influence of tumor necrosis factor α (TNF) on the secretory function of bovine corpus luteum: TNF and its receptors expression during the estrous cycle. Reprod Biol 8:245–262

    Article  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehman MN, Robinson JE, Karsch FJ, Silverman AJ (1986) Immunocytochemical localization of luteinizing hormone-releasing hormone (LHRH) pathways in the sheep brain during anestrus and the mid-luteal phase of the estrous cycle. J Comp Neurol 244:19–35

    Article  CAS  PubMed  Google Scholar 

  • Li B, Qiao L, An L, Wang W, Liu J, Ren Y, Pan Y, Jing J, Liu W (2018) Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genomics 19:338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li T, Wang S, Wu R, Zhou X, Zhu D, Zhang Y (2012) Identification of long non-protein coding RNAs in chicken skeletal muscle using next generation sequencing. Genomics 99:292–298

    Article  CAS  PubMed  Google Scholar 

  • Livek KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Mattick JS, Rinn JL (2015) Discovery and annotation of long noncoding RNAs. Nat Struct Mol Biol 22:5–7

    Article  CAS  PubMed  Google Scholar 

  • McBride D, Carr W, Sontakke SD, Hogg CO, Law A, Donadeu FX, Clinton M (2012) Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction 144:221–233

    Article  CAS  PubMed  Google Scholar 

  • Mulsant P, Lecerf F, Fabre S, Schibler L, Monget P, Lanneluc I, Pisselet C, Riquet J, Monniaux D, Callebaut I, Cribiu E, Thimonier J, Teyssier J, Bodin L, Cognié Y, Chitour N, Elsen JM (2011) Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc Natl Acad Sci 98:5104–5109

    Article  Google Scholar 

  • Notter DR (2012) Genetic improvement of reproductive efficiency of sheep and goats. Anim Reprod Sci 130:147–151

    Article  CAS  PubMed  Google Scholar 

  • Pepe GJ, Yochim JM (1971) Glucose-6-phosphate dehydrogenase activity in the endometrium and myometrium of the rat uterus during the estrous cycle and progestation. Biol Reprod 5:161–171

    Article  CAS  PubMed  Google Scholar 

  • Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer discovery 1:391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40:D290–D301

    Article  CAS  PubMed  Google Scholar 

  • Quay WB (1963) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol 3:473–479

    Article  CAS  PubMed  Google Scholar 

  • Robertson HA (1970) The endogenous control of estrus and ovulation in sheep, cattle, and swine. Vitam Horm 27:91–130

    Article  Google Scholar 

  • Ross JW, Ashworth MD, Mathew D, Reagan P, Ritchey JW, Hayashi K, Spencer TE, Lucy M, Geisert RD (2010) Activation of the transcription factor, nuclear factor kappa-B, during the estrous cycle and early pregnancy in the pig. Reprod Biol Endocrinol 8:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabara PH, Jakhesara SJ, Panchal KJ, Joshi CG, Koringa PG (2019) Transcriptomic analysis to affirm the regulatory role of long non-coding RNA in horn cancer of Indian zebu cattle breed Kankrej (Bos indicus). Funct Integr Genomics 20(1):75–87 1-13

    Article  PubMed  CAS  Google Scholar 

  • Srikanth K, Park W, Lim D, Lee KT, Jang GW, Choi BH, Ka H, Park JE, Kim JM (2019) Serial gene co-expression network approach to mine biological meanings from integrated transcriptomes of the porcine endometrium during estrous cycle. Funct Integr Genomics 20(1):117–131 1-15

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (2007) Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14:103–105

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thornton PK, Herrero M (2010) Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc Natl Acad Sci 107:19667–19672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volders PJ, Verheggen K, Menschaert G, Vandepoele K, Martens L, Vandesompele J, Mestdagh P (2014) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43:174–180

    Article  CAS  Google Scholar 

  • Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weikard R, Demasius W, Kuehn C (2017) Mining long noncoding RNA in livestock. Anim Genet 48:3–18

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Lin S, Lei X, Yuan C, Tian Z, Yu Y, Zhao Z, Chen J (2016) Identification and profiling of microRNAs from ovary of estrous Kazakh sheep induced by nutritional status in the anestrous season. Anim Reprod Sci 175:18–26

    Article  CAS  PubMed  Google Scholar 

  • Yeates NTM (1949) The breeding season of the sheep with particular reference to its modification by artificial means using light. J Agric Sci 39:1–43

    Article  Google Scholar 

  • Yoon JH, Abdelmohsen K, Gorospe M (2013) Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 425:3723–3730

    Article  CAS  PubMed  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhai M, Xie Y, Liang H, Lei X, Zhao Z (2018) Comparative profiling of differentially expressed microRNAs in estrous ovaries of kazakh sheep in different seasons. Gene 664:181–191

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Mujahid H, Hou Y, Nallamilli BR, Peng Z (2013a) Plant long ncRNAs: a new frontier for gene regulatory control. Am J Plant Sci 4:1038–1045

    Article  CAS  Google Scholar 

  • Zhang W, Shi S, Jiang J, Li X, Lu H, Ren F (2017) LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed Pharmacother 91:312–319

    Article  CAS  PubMed  Google Scholar 

  • Zhang XD, Zhang YH, Ling YH, Liu Y, Cao HG, Yin ZJ, Ding JP, Zhang XR (2013b) Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus). BMC Genomics 14:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen CZ, Xu MQ, Zhang LQ, Liu JB, Gao Y, Jiang H, Yuan B, Zhang JB (2019) MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. Theriogenology 123:45–53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to all contributors to this work. XYL, CYL, YRX, WN, and SWH conceived and designed the experiment, analyzed and interpreted the data. XYL, CYL, YRX, WN, and SWH wrote the manuscript. XYL, CYL, YRX, RY, HXL, RZQ, MDZ, LL, STY, YU, RRH, YXL, XKW, and TG collected samples. XYL, CYL, and YRX participated in RNA extraction and subsequent analysis. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) [31660644, 31660718 and U1803111], Young innovative talents [2016 BC001, 2017CB003, CXRC201603 and CXRC201806], Bingtuan Science and Technology Cooperation Program [2018 BC011]. The funders had no role in the design of the study; in the collection, analyses, and interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ni or Shengwei Hu.

Ethics declarations

Competing interests

The authors have declared that they have no competing interests.

Ethical approval

All experimental procedures involving animals in this project were approved by the Animal Health Committee of Shihezi University, and all animal experiments were completed under the supervision of the committee (SU-ACUC-08032). The study was conducted in accordance with the ethical standards set out in the Helsinki Declaration of 1964 and its subsequent amendments.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLS 7243 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, C., Xu, Y. et al. Analysis of pituitary transcriptomics indicates that lncRNAs are involved in the regulation of sheep estrus. Funct Integr Genomics 20, 563–573 (2020). https://doi.org/10.1007/s10142-020-00735-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-020-00735-y

Keywords

Navigation