Skip to main content

Advertisement

Log in

Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The recent release of the genome sequences of a number of crop and model plant species has made it possible to define the genome organisation and functional characteristics of specific genes and gene families of agronomic importance. For instance, Sorghum bicolor, maize (Zea mays) and Brachypodium distachyon genome sequences along with the model grass species rice (Oryza sativa) enable the comparative analysis of genes involved in plant defence. Germin-like proteins (GLPs) are a small, functionally and taxonomically diverse class of cupin-domain containing proteins that have recently been shown to cluster in an area of rice chromosome 8. The genomic location of this gene cluster overlaps with a disease resistance QTL that provides defence against two rice fungal pathogens (Magnaporthe oryzae and Rhizoctonia solani). Studies showing the involvement of GLPs in basal host resistance against powdery mildew (Blumeria graminis ssp.) have also been reported in barley and wheat. In this mini-review, we compare the close proximity of GLPs in publicly available cereal crop genomes and discuss the contribution that these proteins, and their genome sequence organisation, play in plant defence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi M, Takenaka Y, Gidamis AB, Mikami B, Utsumi S (2001) Crystal structure of soybean proglycinin a1ab1b homotrimer. J Mol Biol 305(2):291–305

    PubMed  Google Scholar 

  • Agarwal G, Rajavel M, Gopal B, Srinivasan N (2009) Structure-based phylogeny as a diagnostic for functional characterization of proteins with a cupin fold. PLoS ONE 4(5):e5736

    Google Scholar 

  • Aravind L, Koonin EV (1999) Dna-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27(23):4658–4670

    PubMed  Google Scholar 

  • Averyanov A (2009) Oxidative burst and plant disease resistance. Front Biosci (Elite Ed) 1:142–152

    Google Scholar 

  • Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Curr Opin Plant Biol 11(2):187–192

    PubMed  Google Scholar 

  • Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 394(1):178–183

    PubMed  Google Scholar 

  • Bäumlein H, Braun H, Kakhovskaya IA, Shutov AD (1995) Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. J Mol Biol 41(6):1070–1075

    Google Scholar 

  • Benschop JJ, Mohammed S, O’Flaherty M, Heck AJR, Slijper M, Menke FLH (2007) Quantitative phosphoproteomics of early elicitor signaling in arabidopsis. Mol Cell Proteomics 6(7):1198–1214

    PubMed  Google Scholar 

  • Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39:545–554

    Google Scholar 

  • Bhullar NK, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the pm3 resistance locus. Proc Natl Acad Sci USA 106(23):9519–9524

    PubMed  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, Druka A, Steffenson B, Kleinhofs A (2002) The barley stem rust-resistance gene rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99(14):9328–9333

    PubMed  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant nb-lrr immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3(3):126–135

    PubMed  Google Scholar 

  • Carrillo M, Goodwin P, Leach J, Leung H, Cruz CV (2009) Phylogenomic relationships of rice oxalate oxidases to the cupin superfamily and their association with disease resistance qtl. Rice 2(1):67–79

    Google Scholar 

  • Carter C, Thornburg RW (2000) Tobacco nectarin i. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275(47):36726–36733

    PubMed  Google Scholar 

  • Carter C, Graham RA, Thornburg RW (1998) Arabidopsis thaliana contains a large family of germin-like proteins: characterization of cdna and genomic sequences encoding 12 unique family members. Plant Mol Biol 38(6):929–943

    PubMed  Google Scholar 

  • Chandler V, Alleman M (2008) Paramutation: epigenetic instructions passed across generations. Genetics 178(4):1839–1844

    PubMed  Google Scholar 

  • Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100(5):2544–2549

    PubMed  Google Scholar 

  • Christensen AB, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjaer MF, Dudler R, Schweizer P (2004) The germinlike protein glp4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley. Mol Plant-Microb Interact 17(1):109–117

    Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene lr1, isolated from bread wheat (triticum aestivum l.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106

    PubMed  Google Scholar 

  • Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7(2):111–134

    PubMed  Google Scholar 

  • Davidson R, Reeves P, Manosalva P, Leach J (2009) Germins: a diverse protein family important for crop improvement. Plant Sci 3(1):43–55

    Google Scholar 

  • Davidson RM, Manosalva PM, Snelling J, Bruce M, Leung H, Leach JE (2010) Rice germin-like proteins: Allelic diversity and relationships to early stress responses. Rice 3:43–55

    Google Scholar 

  • Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F (2003) A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiol 44(11):1208–1214

    PubMed  Google Scholar 

  • Donaldson P, Anderson T, Lane B, Davidson A, Simmonds D (2001) Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen sclerotina sclerotiorum. Physiol Mol Plant Pathol 59(6):297–307

    Google Scholar 

  • Druka A, Kudrna D, Kannangara CG, von Wettstein D, Kleinhofs A (2002) Physical and genetic mapping of barley (Hordeum vulgare) germin-like cdnas. Proc Natl Acad Sci USA 99(2):850–855

    PubMed  Google Scholar 

  • Dumas B, Sailland A, Cheviet JP, Freyssinet G, Pallett K (1993) Identification of barley oxalate oxidase as a germin-like protein. C R Acad Sci, 3 Sci Vie 316(8):793–798

    Google Scholar 

  • Dunwell J, Gane P (1998) Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes. J Mol Biol 46(2):147–154

    Google Scholar 

  • Dunwell J, Gibbings J, Mahmood T, Naqvi SS (2008) Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci 27:342–375

    Google Scholar 

  • Dunwell JM (1998) Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. Biotechnol Genet Eng Rev 15:1–32

    PubMed  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64(1):153–179

    PubMed  Google Scholar 

  • Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65(1):7–17

    PubMed  Google Scholar 

  • Eulgem T (2005) Regulation of the arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–8

    PubMed  Google Scholar 

  • Federico ML, Iñiguez-Luy FL, Skadsen RW, Kaeppler HF (2006) Spatial and temporal divergence of expression in duplicated barley germin-like protein-encoding genes. Genetics 174(1):179–190

    PubMed  Google Scholar 

  • Felle HH, Herrmann A, Hückelhoven R, Kogel K-H (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (hordeum vulgare). Protoplasma 227(1):17–24

    PubMed  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100(25):15253–15258

    PubMed  Google Scholar 

  • Ficke A, Gadoury DM, Seem RC (2002) Ontogenic resistance and plant disease management: a case study of grape powdery mildew. Phytopathology 92(6):671–675

    PubMed  Google Scholar 

  • Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H-R, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A (2008) The pfam protein families database. Nucleic Acids Res 36(Database issue):D281–D288

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-start gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    PubMed  Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325(5943):998–1001

    PubMed  Google Scholar 

  • Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/xyls family of transcriptional regulators. Microbiol Mol Biol Rev 61(4):393–410

    PubMed  Google Scholar 

  • Gane PJ, Dunwell JM, Warwicker J (1998) Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J Mol Biol 46(4):488–493

    Google Scholar 

  • Gill BS, Appels R, Botha-Oberholster A-M, Buell CR, Bennetzen JL, Chalhoub B, Chumley F, Dvorak J, Iwanaga M, Keller B, Li W, McCombie WR, Ogihara Y, Quetier F, Sasaki T (2004) A workshop report on wheat genome sequencing: International genome research on wheat consortium. Genetics 168(2):1087–1096

    PubMed  Google Scholar 

  • Godfrey D, Able AJ, Dry IB (2007) Induction of a grapevine germin-like protein (vvglp3) gene is closely linked to the site of erysiphe necator infection: a possible role in defense? Mol Plant-Microb Interact 20(9):1112–1125

    Google Scholar 

  • Heintzen C, Fischer R, Melzer S, Kappeler K, Apel K, Staiger D (1994) Circadian oscillations of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant sinapis alba l. Plant Physiol 106(3):905–915

    PubMed  Google Scholar 

  • Himmelbach A, Liu L, Zierold U, Altschmied L, Maucher H, Beier F, Müller D, Hensel G, Heise A, Schützendübel A, Kumlehn J, Schweizer P (2010) Promoters of the barley germin-like ger4 gene cluster enable strong transgene expression in response to pathogen attack. Plant Cell 22:937–952

    PubMed  Google Scholar 

  • Houde M, Diallo AO (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:400

    PubMed  Google Scholar 

  • Hu K-M, Qiu D-Y, Shen X-L, Li X-H, Wang S-P (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol Plant 1(5):786–793

    PubMed  Google Scholar 

  • Huang L, Brooks SA, Li, W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene lr21 from the large and polyploid genome of bread wheat. Genetics 164(2):655–664

    PubMed  Google Scholar 

  • Hurkman W, Tao H, Tanaka C (1991) Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol 97(1):366–374

    PubMed  Google Scholar 

  • Hurkman WJ, Lane BG, Tanaka CK (1994) Nucleotide sequence of a transcript encoding a germin-like protein that is present in salt-stressed barley (hordeum vulgare l.) roots. Plant Physiol 104(2):803–804

    PubMed  Google Scholar 

  • Initiative TIB, investigators P, Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, sequencing D, assembly Barry K, Lucas S, Harmon-Smith M, Lail K, Tice H, Leader JS, Grimwood J, McKenzie N, Bevan MW, assembly P, end sequencing B, Huo N, Gu YQ, Lazo GR, Anderson OD, Leader JPV, You FM, Luo M-C, Dvorak J, Wright J, Febrer M, Bevan MW, Idziak D, Hasterok R, Garvin DF, sequencing T, analysis Lindquist E, Wang M, Fox SE, Priest HD, Filichkin SA, Givan SA, Bryant DW, Chang JH, Leader TCM, Wu H, Wu W, Hsia A-P, Schnable PS, Kalyanaraman A, Barbazuk B, Michael TP, Hazen SP, Bragg JN, Laudencia-Chingcuanco D, Vogel JP, Garvin DF, Weng Y, McKenzie N, Bevan MW, analysis G, annotation Haberer G, Spannagl M, Leader KM, Rattei T, Mitros T, Rokhsar D, Lee S-J, Rose JKC, Mueller LA, York TL, analysis R, Leader TW, Buchmann JP, Tanskanen J, Leader AHS, Gundlach H, Wright J, Bevan M, de Oliveira AC, da C Maia L, Belknap W, Gu YQ, Jiang N, Lai J, Zhu L, Ma J, Sun C, Pritham E, Genomics C, Leader JS, Murat F, Abrouk M, Haberer G, Spannagl M, Mayer K, Bruggmann R, Messing J, You FM, Luo M-C, Dvorak J, analysis SR, Fahlgren N, Fox SE, Sullivan CM, Mockler TC, Carrington JC, Chapman EJ, May GD, Zhai J, Ganssmann M, Gurazada SGR, German M, Meyers BC, Leader PJG, annotation M, gene family analysis, Bragg JN, Tyler L, Wu J, Gu YQ, Lazo GR, Laudencia-Chingcuanco D, Thomson J, Leader JPV, Hazen SP, Chen S, Scheller HV, Harholt J, Ulvskov P, Fox SE, Filichkin SA, Fahlgren N, Kimbrel JA, Chang JH, Sullivan CM, Chapman EJ, Carrington JC, Mockler TC, Bartley LE, Cao P, Jung K-H, Sharma MK, Vega-Sanchez M, Ronald P, Dardick CD, Bodt SD, Verelst W, Inzé D, Heese M, Schnittger A, Yang X, Kalluri UC, Tuskan GA, Hua Z, Vierstra RD, Garvin DF, Cui Y, Ouyang S, Sun Q, Liu Z, Yilmaz A, Grotewold E, Sibout R, Hematy K, Mouille G, Höfte H, Michael T, Pelloux J, O’Connor D, Schnable J, Rowe S, Harmon F, Cass CL, Sedbrook JC, Byrne ME, Walsh S, Higgins J, Bevan M, Li P, Brutnell T, Unver T, Budak H, Belcram H, Charles M, Chalhoub B, Baxter I (2010) Genome sequencing and analysis of the model grass brachypodium distachyon. Nature 463(7282):763–768

    Google Scholar 

  • Jones JDG, Dangl JL (2006). The plant immune system. Nature 444(7117):323–329

    PubMed  Google Scholar 

  • Kafri R, Levy M, Pilpel Y (2006) The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci USA 103(31):11653–11658

    PubMed  Google Scholar 

  • Ke Y, Han G, He H, Li J (2009) Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 379(1):133–138

    PubMed  Google Scholar 

  • Khuri S, Bakker FT, Dunwell JM (2001) Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 18(4):593–605

    PubMed  Google Scholar 

  • Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF (2007) Laser capture microdissection (lcm) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226(6):1389–1409

    PubMed  Google Scholar 

  • Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, Lou B, Oelmüller R, Cai D (2010) Expression of bvglp-1 encoding a germin-like protein from sugar beet in arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant-Microb Interact 23(4):446–457

    Google Scholar 

  • Kondo K, Yamada K, Nakagawa A, Takahashi M, Morikawa H, Sakamoto A (2008) Molecular characterization of atmospheric no2-responsive germin-like proteins in azalea leaves. Biochem Biophys Res Commun 377(3):857–861

    PubMed  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13(2):181–185

    PubMed  Google Scholar 

  • Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The rcsb pdb information portal for structural genomics. Nucleic Acids Res 34(Database issue):D302–D305

    Google Scholar 

  • Krattinger S, Lagudah E, Spielmeyer W, Singh R, Huerta-Espino J, McFadden H, Bossolini E, Selter L, Keller B (2009) A putative abc transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363

    PubMed  Google Scholar 

  • Kukavica B, Vucinić Z, Vuletić M (2005) Superoxide dismutase, peroxidase, and germin-like protein activity in plasma membranes and apoplast of maize roots. Protoplasma 226(3–4):191–197

    PubMed  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102(25):9068–9073

    PubMed  Google Scholar 

  • Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8(3):294–301

    PubMed  Google Scholar 

  • Lane BG (2002) Oxalate, germins, and higher-plant pathogens. IUBMB Life 53(2):67–75

    PubMed  Google Scholar 

  • Lane BG, Bernier F, Dratewka-Kos E, Shafai R, Kennedy TD, Pyne C, Munro JR, Vaughan T, Walters D, Altomare F (1991) Homologies between members of the germin gene family in hexaploid wheat and similarities between these wheat germins and certain physarum spherulins. J Biol Chem 266(16):10461–10469

    PubMed  Google Scholar 

  • Lane BG, Cuming AC, Frégeau J, Carpita NC, Hurkman WJ, Bernier F, Dratewka-Kos E, Kennedy TD (1992) Germin isoforms are discrete temporal markers of wheat development. Pseudogermin is a uniquely thermostable water-soluble oligomeric protein in ungerminated embryos and like germin in germinated embryos, it is incorporated into cell walls. Eur J Biochem 209(3):961–969

    PubMed  Google Scholar 

  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268(17):12239–12242

    PubMed  Google Scholar 

  • Li Q, Li L, Dai J, Li J, Yan J (2009) Identification and characterization of cacta transposable elements capturing gene fragments in maize. Chin Sci Bull 42:251–269

    Google Scholar 

  • Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45(6):619–629

    PubMed  Google Scholar 

  • Liu G, Jia Y, Correa-Victoria FJ, Prado GA, Yeater KM, McClung A, Correll JC (2009) Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology 99(9):1078–1084

    PubMed  Google Scholar 

  • Lou Y, Baldwin IT (2006) Silencing of a germin-like gene in nicotiana attenuata improves performance of native herbivores. Plant Physiol 140(3):1126–1136

    PubMed  Google Scholar 

  • Mahmood T, Nazar N, Abbasi B (2010) Comparative analysis of regulatory elements in different germin-like protein gene promoters. Afr J Biotechnol 9(13):1871–1881

    Google Scholar 

  • Manosalva P, Davidson R, Liu B, Zhu X, Hulbert S, Leung H, Leach J (2008) A germin-like protein gene family functions as a complex qtl conferring broad-spectrum disease resistance in rice. Plant Physiol 149(1):286–296

    PubMed  Google Scholar 

  • Mathieu M, Lelu-Walter MA, Blervacq AS, David H, Hawkins S, Neutelings G (2006) Germin-like genes are expressed during somatic embryogenesis and early development of conifers. Plant Mol Biol 61(4–5):615–627

    PubMed  Google Scholar 

  • McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32(7):736–744

    PubMed  Google Scholar 

  • Membré N, Bernier F, Staiger D, Berna A (2000) Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211(3):345–354

    PubMed  Google Scholar 

  • Membré N, Berna A, Neutelings G, David A, David H, Staiger D, Vásquez JS, Raynal M, Delseny M, Bernier F (1997) CDNA sequence, genomic organization and differential expression of three arabidopsis genes for germin/oxalate oxidase-like proteins. Plant Mol Biol 35(4):459–469

    PubMed  Google Scholar 

  • Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP, Morris VJ (2002) Allergens of the cupin superfamily. Biochem Soc Trans 30(Pt 6):925–929

    PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer-Verlag, Berlin

    Google Scholar 

  • Ouyang S, Buell CR (2004) The tigr plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32(Database issue):D360–D363

    Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The tigr rice genome annotation resource: improvements and new features. Nucleic Acids Res 35(Database issue):D883–D887

    Google Scholar 

  • Padmanabhan M, Cournoyer P, Dinesh-Kumar SP (2009) The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Cell Microbiol 11(2):191–198

    PubMed  Google Scholar 

  • Park C-J, Kim K-J, Shin R, Park JM, Shin Y-C, Paek K-H (2003) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J 37(2):186–198

    Google Scholar 

  • Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming qtls and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci 45:313–324

    Google Scholar 

  • Ramalingam J, Cruz CMV, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH, Leach JE, Leung H (2003) Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Mol Plant-Microb Interact 16(1):14–24

    Google Scholar 

  • Ramputh A, Arnason J, Cass L, Simmonds J (2002) Reduced herbivory of the european corn borer (ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Sci 162(3):431–440

    Google Scholar 

  • Requena L, Bornemann S (1999) Barley (hordeum vulgare) oxalate oxidase is a manganese-containing enzyme. Biochem J 343 Pt 1:185–190

    PubMed  Google Scholar 

  • Rodríguez-López M, Baroja-Fernández E, Zandueta-Criado A, Moreno-Bruna B, Muñoz FJ, Akazawa T, Pozueta-Romero J (2001) Two isoforms of a nucleotide-sugar pyrophosphatase/phosphodiesterase from barley leaves (hordeum vulgare l.) are distinct oligomers of hvglp1, a germin-like protein. FEBS lett 490(1–2):44–48

    PubMed  Google Scholar 

  • Salse J, Chague V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the b genome of hexaploid wheat: evolutionary relationships at the spa genomic region with the s genome of the diploid relative aegilops speltoides. BMC Genomics 9(1):555

    PubMed  Google Scholar 

  • Schnable P, Ware D, Fulton R, Stein J, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T, Minx P, Reily A, Courtney L, Kruchowski S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S, Belter E, Du F, Kim K, Abbott R, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M, McMahan L, Buren PV, Vaughn M, Ying K, Yeh C-T, Emrich S, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk W, Baucom R, Brutnell T, Carpita N, Chaparro C, Chia J-M, Deragon J-M, Estill J, Fu Y, Jeddeloh J, Han Y, Lee H, Li P, Lisch D, Liu S, Liu Z, Nagel D, McCann M, SanMiguel P, Myers A, Nettleton D, Nguyen J, Penning B, Ponnala L, Schneider K, Schwartz D, Sharma A, Soderlund C, Springer N, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen J, Dawe R, Jiang J, Jiang N, Presting G, Wessler S, Aluru S, Martienssen R, Clifton S, McCombie W, Wing R, Wilson R (2009) The b73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    PubMed  Google Scholar 

  • Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, Sato K, Schulman AH, Waugh R, Wise RP, Stein N (2009) The international barley sequencing consortium–at the threshold of efficient access to the barley genome. Plant Physiol 149(1):142–147

    PubMed  Google Scholar 

  • Schweizer P, Christoffel A, Dudler R (1999) Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance. Plant J 20(5):541–552

    PubMed  Google Scholar 

  • Sirithunya P, Tragoonrung S, Vanavichit A, Pa-In N, Vongsaprom C, Toojinda T (2002) Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (oryza sativa). DNA Res 9(3):79–88

    PubMed  Google Scholar 

  • Soares NC, Francisco R, Vielba JM, Ricardo CP, Jackson PA (2009) Associating wound-related changes in the apoplast proteome of medicago with early steps in the ros signal-transduction pathway. J Proteome Res 8(5):2298–309

    PubMed  Google Scholar 

  • Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C (1997a) The 1.6 a crystal structure of the arac sugar-binding and dimerization domain complexed with d-fucose. J Mol Biol 273(1):226–237

    PubMed  Google Scholar 

  • Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C (1997b) Structural basis for ligand-regulated oligomerization of arac. Science 276(5311):421–425

    PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, xa21. Science 270(5243):1804–1806

    PubMed  Google Scholar 

  • Tabien E, Li Z, Paterson H, Marchetti A, Stansel W, Pinson M (2002) Mapping qtls for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet 105(2–3):313–324.

    PubMed  Google Scholar 

  • Tanner A, Bornemann S (2000) Bacillus subtilis yvrk is an acid-induced oxalate decarboxylase. J Bacteriol 182(18):5271–5273

    PubMed  Google Scholar 

  • Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Petersen V, Thordal-Christensen H (1998) An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. Plant Mol Biol 36(1):101–112

    PubMed  Google Scholar 

  • Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169(4):2277–2293

    PubMed  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson, RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96(2):120–129

    PubMed  Google Scholar 

  • Wojtaszek P (1997a) Mechanisms for the generation of reactive oxygen species in plant defence response. Acta Physiol Plant 19:581–589

    Google Scholar 

  • Wojtaszek P (1997b) Oxidative burst: an early plant response to pathogen infection. Biochem J 322(Pt 3):681–692

    PubMed  Google Scholar 

  • Woo EJ, Dunwell JM, Goodenough PW, Marvier AC, Pickersgill RW (2000) Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities. Nat Struct Biol 7(11):1036–1040

    PubMed  Google Scholar 

  • Wu J-L, Sinha PK, Variar M, Zheng K-L, Leach JE, Courtois B, Leung H (2004) Association between molecular markers and blast resistance in an advanced backcross population of rice. Theor Appl Genet 108(6):1024–1032

    PubMed  Google Scholar 

  • Xiang P, Beardslee TA, Zeece MG, Markwell J, Sarath G (2002) Identification and analysis of a conserved immunoglobulin e-binding epitope in soybean g1a and g2a and peanut ara h 3 glycinins. Arch Biochem Biophys 408(1):51–57

    PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene pm3b from hexaploid wheat. Plant J 37(4):528–538

    PubMed  Google Scholar 

  • Yamahara T, Shiono T, Suzuki T, Tanaka K, Takio S, Sato K, Yamazaki S, Satoh T (1999) Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, barbula unguiculata. J Biol Chem 274(47):33274–33278

    PubMed  Google Scholar 

  • Yi H, Richards EJ (2007) A cluster of disease resistance genes in arabidopsis is coordinately regulated by transcriptional activation and rna silencing. Plant Cell 19(9):2929–2939

    PubMed  Google Scholar 

  • Zimmermann G, Bäumlein H, Mock H-P, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol 142(1):181–192

    PubMed  Google Scholar 

  • Zou J, Pan X, Chen Z, Xu J, Lu J, Zhai W, Zhu L (2000) Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (oryza sativa l.). Theor Appl Genet 101:569–573

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the help of Professor Christ of Ringli for manuscript editing and scientific feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Breen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breen, J., Bellgard, M. Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. Funct Integr Genomics 10, 463–476 (2010). https://doi.org/10.1007/s10142-010-0184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0184-1

Keywords

Navigation