Skip to main content

Advertisement

Log in

Effect of Epstein–Barr virus infection on global gene expression in nasopharyngeal carcinoma

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

It was proposed that Epstein–Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC); however, the molecular mechanisms involved in the effect of EBV on NPC host genes have not yet been well defined. For this study, two sets of microarray experiments, NPC (EBV-free) vs normal epithelial cells and EBV+ vs EBV NPC arrays, were analyzed and the datasets were cross-compared to identify any correlation between gene clusters involved in EBV targeting and the NPC host gene expression profiles. Statistical analysis revealed that EBV seems to have a preference for targeting more genes from the differentially expressed group in NPC cells than those from the ubiquitously expressed group. Furthermore, this trend is also reflected in log ratios where the EBV target genes of the differentially expressed group origin showed greater log ratios than genes with an origin from the ubiquitously expressed NPC group. Taken together, the genome-wide comparative scanning of EBV and NPC transcriptomes has successfully demonstrated that EBV infection has an intensifying effect on the signals involved in NPC gene expression both in breadth (the majority of the genes) and in depth (greater log ratios).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armstrong RW, Armstrong MJ, Yu MC, Henderson BE (1983) Salted fish and inhalants as risk factors for nasopharyngeal carcinoma in Malaysian Chinese. Cancer Res 43:2967–2970

    PubMed  CAS  Google Scholar 

  • Brooks L, Yao QY, Rickinson AB, Young LS (1992) Epstein–Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 66:2689–2697

    PubMed  CAS  Google Scholar 

  • Busson P, Ganem G, Flores P, Mugneret F, Clausse B, Caillou B, Braham K, Wakasugi H, Lipinski M, Tursz T (1988) Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. Int J Cancer 42:599–606

    PubMed  CAS  Google Scholar 

  • Chang Y, Sheen TS, Lu J, Huang YT, Chen JY, Yang CS, Tsai CH (1998) Detection of transcripts initiated from two viral promoters (Cp and Wp) in Epstein–Barr virus-infected nasopharyngeal carcinoma cells and biopsies. Lab Invest 78:715–726

    PubMed  CAS  Google Scholar 

  • Cochet C, Martel-Renoir D, Grunewald V, Bosq J, Cochet G, Schwaab G, Bernaudin JF, Joab I (1993) Expression of the Epstein–Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197:358–365

    Article  PubMed  CAS  Google Scholar 

  • Depper JM, Bluestein HG, Zvaifler NJ (1981) Impaired regulation of Epstein–Barr virus-induced lymphocyte proliferation in rheumatoid arthritis is due to a T cell defect. J Immunol 127:1899–1902

    PubMed  CAS  Google Scholar 

  • Epstein MA (1978) Epstein–Barr virus-discovery, properties and relationship to nasopharyngeal carcinoma. IARC Sci Publ :333–345

  • Fahraeus R, Fu HL, Ernberg I, Finke J, Rowe M, Klein G, Falk K, Nilsson E, Yadav M, Busson P et al (1988) Expression of Epstein–Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42:329–338

    PubMed  CAS  Google Scholar 

  • Feng P, Chan SH, Ooi EE, Soo MY, Loh KS, Wang D, Ren EC, Hu H (1999) Elevated blood levels of soluble tumor necrosis factor receptors in nasopharyngeal carcinoma: correlation with humoral immune response to lytic replication of Epstein–Barr virus. Int J Oncol 15:167–172

    PubMed  Google Scholar 

  • Gilligan KJ, Rajadurai P, Lin JC, Busson P, Abdel-Hamid M, Prasad U, Tursz T, Raab-Traub N (1991) Expression of the Epstein–Barr virus BamHI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. J Virol 65:6252–6259

    PubMed  CAS  Google Scholar 

  • Gunven P, Klein G, Henle G, Henle W, Clifford P (1970) Epstein–Barr virus in Burkitt’s lymphoma and nasopharyngeal carcinoma. Antibodies to EBV associated membrane and viral capsid antigens in Burkitt lymphoma patients. Nature 228:1053–1056

    Article  PubMed  CAS  Google Scholar 

  • Henle W, Henle G (1970) Evidence for a relation of Epstein–Barr virus to Burkitt’s lymphoma and nasopharyngeal carcinoma. Bibl Haematol (36):706–713

    PubMed  Google Scholar 

  • Hitt MM, Allday MJ, Hara T, Karran L, Jones MD, Busson P, Tursz T, Ernberg I, Griffin BE (1989) EBV gene expression in an NPC-related tumour. EMBO J 8:2639–2651

    PubMed  CAS  Google Scholar 

  • Ho CK, Lo WC, Huang PH, Wu MT, Christiani DC, Lin CT (1999) Suspected nasopharyngeal carcinoma in three workers with long-term exposure to sulphuric acid vapour. Occup Environ Med 56:426–428

    Article  PubMed  CAS  Google Scholar 

  • Hsiao JR, Jin YT, Tsai ST (2002) Detection of cell free Epstein–Barr virus DNA in sera from patients with nasopharyngeal carcinoma. Cancer 94:723–729

    Article  PubMed  CAS  Google Scholar 

  • Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378

    PubMed  CAS  Google Scholar 

  • Jones JF, Ray CG, Minnich LL, Hicks MJ, Kibler R, Lucas DO (1985) Evidence for active Epstein–Barr virus infection in patients with persistent, unexplained illnesses: elevated anti-early antigen antibodies. Ann Intern Med 102:1–7

    PubMed  CAS  Google Scholar 

  • Kikuta H, Taguchi Y, Tomizawa K, Kojima K, Kawamura N, Ishizaka A, Sakiyama Y, Matsumoto S, Imai S, Kinoshita T et al (1988) Epstein–Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333:455–457

    Article  PubMed  CAS  Google Scholar 

  • Klein G, Giovanella BC, Lindahl T, Fialkow PJ, Singh S, Stehlin JS (1974) Direct evidence for the presence of Epstein–Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx. Proc Natl Acad Sci U S A 71:4737–4741

    Article  PubMed  CAS  Google Scholar 

  • Leung SY, Chung LP, Yuen ST, Ho CM, Wong MP, Chan SY (1995) Lymphoepithelial carcinoma of the salivary gland: in situ detection of Epstein–Barr virus. J Clin Pathol 48:1022–1027

    PubMed  CAS  Google Scholar 

  • Leyvraz S, Henle W, Chahinian AP, Perlmann C, Klein G, Gordon RE, Rosenblum M, Holland JF (1985) Association of Epstein–Barr virus with thymic carcinoma. N Engl J Med 312:1296–1299

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Wong CI, Chan WY, Tzung KW, Ho JK, Hsu MM, Chuang SM (1990) Establishment and characterization of two nasopharyngeal carcinoma cell lines. Lab Invest 62:713–724

    PubMed  CAS  Google Scholar 

  • Lin CT, Chan WY, Chen W, Huang HM, Wu HC, Hsu MM, Chuang SM, Wang CC (1993) Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68:716–727

    PubMed  CAS  Google Scholar 

  • Lin CT, Dee AN, Chen W, Chan WY (1994) Association of Epstein–Barr virus, human papilloma virus, and cytomegalovirus with nine nasopharyngeal carcinoma cell lines. Lab Invest 71:731–736

    PubMed  CAS  Google Scholar 

  • Lin CT, Lin CR, Tan GK, Chen W, Dee AN, Chan WY (1997) The mechanism of Epstein–Barr virus infection in nasopharyngeal carcinoma cells. Am J Pathol 150:1745–1756

    PubMed  CAS  Google Scholar 

  • Lin CT, Kao HJ, Lin JL, Chan WY, Wu HC, Liang ST (2000) Response of nasopharyngeal carcinoma cells to Epstein–Barr virus infection in vitro. Lab Invest 80:1149–1160

    PubMed  CAS  Google Scholar 

  • Lin JC, Chen KY, Wang WY, Jan JS, Liang WM, Tsai CS, Wei YH (2001) Detection of Epstein–Barr virus DNA the peripheral-blood cells of patients with nasopharyngeal carcinoma: relationship to distant metastasis and survival. J Clin Oncol 19:2607–2615

    PubMed  CAS  Google Scholar 

  • Lo YM, Chan LY, Chan AT, Leung SF, Lo KW, Zhang J, Lee JC, Hjelm NM, Johnson PJ, Huang DP (1999) Quantitative and temporal correlation between circulating cell-free Epstein–Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res 59:5452–5455

    PubMed  CAS  Google Scholar 

  • Lo YM, Chan WY, Ng EK, Chan LY, Lai PB, Tam JS, Chung SC (2001) Circulating Epstein–Barr virus DNA in the serum of patients with gastric carcinoma. Clin Cancer Res 7:1856–1859

    PubMed  CAS  Google Scholar 

  • Lo KW, To KF, Huang DP (2004) Focus on nasopharyngeal carcinoma. Cancer Cell 5:423–428

    Article  PubMed  CAS  Google Scholar 

  • Luka J, Deeb ZE, Hartmann DP, Jenson B, Pearson GR (1988) Detection of antigens associated with Epstein–Barr virus replication in extracts from biopsy specimens of nasopharyngeal carcinomas. J Natl Cancer Inst 80:1164–1167

    PubMed  CAS  Google Scholar 

  • Miyasaka N, Yamaoka K, Tateishi M, Nishioka K, Yamamoto K (1989) Possible involvement of Epstein–Barr virus (EBV) in polyclonal B-cell activation in Sjogren’s syndrome. J Autoimmun 2:427–432

    Article  PubMed  CAS  Google Scholar 

  • Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K, Orentreich N, Polk BF, Vogelman J (1989) Hodgkin’s disease and Epstein–Barr virus. Altered antibody pattern before diagnosis. N Engl J Med 320:689–695

    Article  PubMed  CAS  Google Scholar 

  • Niedobitek G, Hansmann ML, Herbst H, Young LS, Dienemann D, Hartmann CA, Finn T, Pitteroff S, Welt A, Anagnostopoulos I et al (1991) Epstein–Barr virus and carcinomas: undifferentiated carcinomas but not squamous cell carcinomas of the nasopharynx are regularly associated with the virus. J Pathol 165:17–24

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa J, Imai S, Oda T, Kojima T, Okita K, Takada K (1999) Epstein–Barr virus promotes epithelial cell growth in the absence of EBNA2 and LMP1 expression J Virol 73:1286–1292

    PubMed  CAS  Google Scholar 

  • Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, Perou CM, Botstein D, Braman J (2004) Universal reference RNA as a standard for microarray experiments. BMC Genomics 5:20

    Article  PubMed  Google Scholar 

  • Ohigashi H, Koshimizu K, Tokuda H, Hiramatsu S, Jato J, Ito Y (1985) Epstein–Barr virus-inducing activity of Euphorbiaceae plants commonly grown in Cameroon. Cancer Lett 28:135–141

    Article  PubMed  CAS  Google Scholar 

  • Raab-Traub N, Hood R, Yang CS, Henry B 2nd, Pagano JS (1983) Epstein–Barr virus transcription in nasopharyngeal carcinoma. J Virol 48:580–590

    PubMed  CAS  Google Scholar 

  • Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, Van de Rijn M, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24:227–235

    Article  PubMed  CAS  Google Scholar 

  • Sbih-Lammali F, Berger F, Busson P, Ooka T (1996a) Expression of the DNase encoded by the BGLF5 gene of Epstein–Barr virus in nasopharyngeal carcinoma epithelial cells. Virology 222:64–74

    Article  PubMed  CAS  Google Scholar 

  • Sbih-Lammali F, Djennaoui D, Belaoui H, Bouguermouh A, Decaussin G, Ooka T (1996b) Transcriptional expression of Epstein–Barr virus genes and proto-oncogenes in North African nasopharyngeal carcinoma. J Med Virol 49:7–14

    Article  PubMed  CAS  Google Scholar 

  • Sixbey JW, Yao QY (1992) Immunoglobulin A-induced shift of Epstein–Barr virus tissue tropism. Science 255:1578–1580

    Article  PubMed  CAS  Google Scholar 

  • Straus SE, Dale JK, Wright R, Metcalfe DD (1988) Allergy and the chronic fatigue syndrome. J Allergy Clin Immunol 81:791–795

    Article  PubMed  CAS  Google Scholar 

  • Teng ZP, Ooka T, Huang DP, Zeng Y (1996) Detection of Epstein–Barr Virus DNA in well and poorly differentiated nasopharyngeal carcinoma cell lines. Virus Genes 13:53–60

    Article  PubMed  CAS  Google Scholar 

  • Teramoto N, Maeda A, Kobayashi K, Hayashi K, Oka T, Takahashi K, Takada K, Klein G, Akagi T (2000) Epstein–Barr virus infection to Epstein–Barr virus-negative nasopharyngeal carcinoma cell line TW03 enhances its tumorigenicity. Lab Invest 80:303–312

    PubMed  CAS  Google Scholar 

  • Tsai ST, Jin YT, Su IJ (1996) Expression of EBER1 in primary and metastatic nasopharyngeal carcinoma tissues using in situ hybridization. A correlation with WHO histologic subtypes. Cancer 77:231–236

    Article  PubMed  CAS  Google Scholar 

  • Vasef MA, Ferlito A, Weiss LM (1997) Nasopharyngeal carcinoma, with emphasis on its relationship to Epstein–Barr virus. Ann Otol Rhinol Laryngol 106:348–356

    PubMed  CAS  Google Scholar 

  • Waterhouse L, Muir C, Shanmugaratnam K, Powell J, Peachham D, Whelan S (1982) Cancer incidence in five continents. International Agency for Research on Cancer, Lyon

  • Winrow VR, Norton J, Holborow EJ, Stierle HE, Young A, Sachs JA (1988) T cell cytotoxicity to Epstein–Barr virus infected B cells: comparison of patients with rheumatoid arthritis and their HLA identical siblings. Ann Rheum Dis 47:280–285

    PubMed  CAS  Google Scholar 

  • Wu HC, Lin YJ, Lee JJ, Liu YJ, Liang ST, Peng Y, Chiu YW, Wu CW, Lin CT (2003) Functional analysis of EBV in nasopharyngeal carcinoma cells. Lab Invest 83:797–812

    PubMed  Google Scholar 

  • Wu HC, Lu TY, Lee JJ, Hwang JK, Lin YJ, Wang CK, Lin CT (2004) MDM2 expression in EBV-infected nasopharyngeal carcinoma cells. Lab Invest 84:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Young LS, Dawson CW, Clark D, Rupani H, Busson P, Tursz T, Johnson A, Rickinson AB (1988) Epstein–Barr virus gene expression in nasopharyngeal carcinoma. J Gen Virol 69(Pt 5):1051–1065

    Article  PubMed  CAS  Google Scholar 

  • zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G, Clifford P, Santesson L (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228:1056–1058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. S. K. Liao of Chang-Gung University for providing the NPC-CGBM1 cell lines and Dr. C. M. Liu of National Taiwan University Hospital for the surgical specimens of nasal polyps. They would also like to thank Dr. Shih-Lan Hsu, Dr. Fen-Hwa Wong, Dr. Hsiao-Sheng Liu, Dr. Jenn-Han Chen, Dr. Cheng-Yang Chou, Dr. Li-Wha Wu, Dr. A-Min Huang, Dr. Wey-Jinq Lin, Dr. King-Song Jeng, and Dr. Nan-Haw for their contributions to common reference RNA mixtures, and Dr. Fátima Al-Shahrour for allowing them to use the FatiGO algorithm. A special thank goes to Dr. Andrew Su (Genomics Institute of Novartis Research Foundation), Dr. Su-Fang Lin (National Health Research Institutes), Dr. Hung-Wen Chiu (Taipei Medical University), and Yang C. Fann (National Institute of Neurological Disorders and Stroke, National Institutes of Health) for the critical reading and inspiring comments on the manuscript. This research was supported, in part, by grants from the National Science Council (NSC93-3112-B-002-038 and NSC93-2320-B-002-112), the National Health Research Institutes (NHRI-EX92-9014BL), and the National Taiwan University Hospital (NTUH-92-S057, 93-S080, and 93A10-2) to C.-T. Lin; National Health Research Institutes and National Science Council (NRPGM: NSC93-3112-B-400-001) to C.-F. Huang; and National Science Council (NSC93-2320-B-038-043) and Topnotch Stroke Research Center Grant (Ministry of Education) to Y.-C. G. Lee. Yuan-Chii Gladys Lee and Yu-Chyi Hwang contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Tarng Lin.

Additional information

Accession numbers of the genes used in the study are GEO: GSE2370, GEO: GSE2371, and GEO: GPL1885.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10142_2006_35_MOESM1_ESM.doc

Below is the image is a link to a high resolution version

Fig. S1

Boxplots analysis of the distribution of gene classification among groups in both NPC/Normal and EBV+/− arrays. The box presents the 75th and 25th percentiles (upper and lower quartiles) with the median value in between. The median values for up, down regulated and ubiquitously expressed groups are 076, −0.91 and 0.01 for NPC/Normal arrays (A) and are 0.38, −0.41 and 0.01 for EBV+/− arrays (B). The whiskers give the lowest and highest values. Outliers and extreme values are marked as circle and cross, respectively. The N means number of genes. The statistical significance between groups is also indicated. (JPEG 45 kb)

10142_2006_35_Fig1_ESM.tif

Fig. S2

Expression-data matrix for EBV and non-EBV target genes in the EBV+/− array (A) and their corresponding gene expression in NPC/Normal arrays (B). The 164 EBV target genes could be dived into two groups when traced back to the gene expression profiles in the NPC/Normal arrays: differentially expressed (n=98) and ubiquitously expressed genes (n=66). Again, the 136 non-EBV target genes in the EBV+/− arrays were also divided into differentially (n=52) and ubiquitously expressed genes (n=84) in the NPC/Normal arrays. In this two-dimensional presentation, each row represents a gene. The dendrogram at left of the matrix shows the relationship of gene expression for each sample. The expression level of each gene (relative to its median expression level across all samples) is represented by a unique color (red, blue and yellow indicating expression above, below and, equal to the mean, respectively), with the intensity of the color reflecting the magnitude of the deviation from the mean. As indicated, the fluorescence ratio-scale ranges from 0 to 6 (in log-base-2 units). (JPEG 150 kb)

10142_2006_35_Fig2_ESM.tif

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YC.G., Hwang, YC., Chen, KC. et al. Effect of Epstein–Barr virus infection on global gene expression in nasopharyngeal carcinoma. Funct Integr Genomics 7, 79–93 (2007). https://doi.org/10.1007/s10142-006-0035-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-006-0035-2

Keywords

Navigation