Skip to main content
Log in

Unveiling the Role of Dynamic Alternative Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Sea lice are pathogenic marine ectoparasite copepods that represent a severe risk to the worldwide salmon industry. Several transcriptomic investigations have characterized the regulation of gene expression response of Atlantic salmon to sea lice infestation. These studies have focused on the levels of transcript, overlooking the potentially relevant role of alternative splicing (AS), which corresponds to an essential control mechanism of gene expression through RNA processing. In the present study, we performed a genome-wide bioinformatics characterization of differential AS event dynamics in control and infested C. rogercresseyi Atlantic salmon and in resistant and susceptible phenotypes. We identified a significant rise of alternative splicing events and AS genes after infestation and 176 differential alternative splicing events (DASE) from 133 genes. In addition, a higher number of DASE and AS genes were observed among resistant and susceptible phenotypes. Functional annotation of AS genes shows several terms and pathways associated with behavior, RNA splicing, immune response, and RNA binding. Furthermore, three protein-coding genes were identified undergoing differential transcript usage events, among resistant and susceptible phenotypes. Our findings support AS performing a relevant regulatory role in the response of salmonids to sea lice infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The RNA-seq data in SRP100978 were downloaded from Sequence Read Archive. All data acquired and analyzed in this study are included in this paper and the supplementary information file.

Code Availability

Not applicable.

References

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Chang MX, Zhang J (2017) Alternative pre-mRNA splicing in mammals and teleost fish: a effective strategy for the regulation of immune responses against pathogen infection. Int J Mol Sci 18:1530

  • Chauhan K, Kalam H, Dutt R, Kumar D (2019) RNA Splicing: a new paradigm in host-pathogen interactions. J Mol Biol 431:1565–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cofre C, Gonzalez R, Moya J, Vidal R (2014) Phenotype gene expression differences between resistant and susceptible salmon families to IPNV. Fish Physiol Biochem 40:887–896

    Article  CAS  PubMed  Google Scholar 

  • Dawson LH, Pike AW, Houlihan DF, McVicar AH (1999) Changes in physiological parameters and feeding behaviour of Atlantic salmon Salmo salar infected with sea lice Lepeophtheirus salmonis. Dis Aquat Organ 35:89–99

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Muñoz MD, Turner M (2018) Uncovering the role of RNA-binding proteins in gene expression in the immune system. Front Immunol 9:1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  PubMed  Google Scholar 

  • Fast MD, Ross NW, Mustafa A, Sims DE, Johnson SC, Conboy GA, Speare DJ, Johnson G, Burka JF (2002) Susceptibility of rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon Oncorhynchus kisutch to experimental infection with sea lice Lepeophtheirus salmonis. Dis Aquat Organ 52:57–68

    Article  PubMed  Google Scholar 

  • Froussios K, Mourão K, Simpson G, Barton G, Schurch N (2019) Relative abundance of transcripts (RATS): identifying differential isoform abundance from RNA-seq. F1000Res 8:213

  • Gan W, Chung-Davidson YW, Chen Z, Song S, Cui W, He W, Zhang Q, Li W, Li M, Ren J (2021) Global tissue transcriptomic analysis to improve genome annotation and unravel skin pigmentation in goldfish. Sci Rep 11:1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruden-Movsesijan A, LjS M (2006) The involvement of the macrophage mannose receptor in the innate immune response to infection with parasite Trichinella spiralis. Vet Immunol Immunopathol 109:57–67

    Article  CAS  PubMed  Google Scholar 

  • Guragain P, Tkachov M, Båtnes AS, Olsen Y, Winge P, Bones AM (2021) Principles and methods of counteracting harmful salmon–arthropod interactions in salmon farming: addressing possibilities, limitations, and future options. Front Mar Sci 8:701793

  • Hemmingsen W, MacKenzie K, Sagerup K, Remen M, Bloch-Hansen K, Dagbjartarson Imsland AK (2020) Caligus elongatus and other sea lice of the genus Caligus as parasites of farmed salmonids: a review. Aquaculture 522:73516

  • Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta 1851:882–897

    Article  CAS  PubMed  Google Scholar 

  • Jolles JW, Mazué G, Davidson J, Behrmann-Godel J, Couzin ID (2020) Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci Rep 10:12282

  • Levine B, Mizushima N, Virgin H (2011) Autophagy in immunity and inflammation. Nature 469:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Deweys CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH (2020a) Genome-wide characterization of alternative splicing events and their responses to cold stress in tilapia. Front Genet 11:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Song NJ, Riesenberg BP, Li Z (2020b) The emerging roles of endoplasmic reticulum stress in balancing immunity and tolerance in health and diseases: mechanisms and opportunities. Front Immunol 10:3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Huang J, Zhang J, Gao Y, Han B, Sun D (2022) Identification of alternative splicing events associated with paratuberculosis in dairy cattle using multi-tissue RNA sequencing data. Genes (Basel) 13:497

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Peatman E, Wang W, Yang Q, Abernathy J, Wang S, Kucuktas H, Liu Z (2010) Alternative splicing in teleost fish genomes: same-species and cross-species analysis and comparisons. Mol Genet Genomics 283:531–539

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Fang L, Wu C (2022) Alternative splicing and isoforms: from mechanisms to diseases. Genes (Basel) 13:401

    Article  CAS  PubMed  Google Scholar 

  • Mehmood A, Laiho A, Venäläinen MS, McGlinchey AJ, Wang N, Elo LL (2020) Systematic evaluation of differential splicing tools for RNA-seq studies. Brief Bioinform 21:2052–2065

    Article  CAS  PubMed  Google Scholar 

  • Muller IB, Meijers S, Kampstra P, van Dijk S, van Elswijk M, Lin M, Wojtuszkiewicz AM, Jansen G, de Jonge R, Cloos J (2021) Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers. BMC Bioinformatics 22:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okkenhaug K (2013) Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol 31:675–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Øverli Ø, Nordgreen J, Mejdell CM, Janczak AM, Kittilsen S, Johansen IB, Horsberg TE (2014) Ectoparasitic sea lice (Lepeophtheirus salmonis) affect behavior and brain serotonergic activity in Atlantic salmon (Salmo salar L.): perspectives on animal welfare. Physiol Behav 132:44–50

    Article  CAS  PubMed  Google Scholar 

  • Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A (2022) The role of KH-type splicing regulatory protein (KSRP) for Immune functions and tumorigenesis. Cells 11:1482

  • Patthy L (2019) Exon skipping-rich transcriptomes of animals reflect the significance of exon-shuffling in metazoan proteome evolution. Biol Direct 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

  • Poulin R, Thomas F (1999) Phenotypic variability induced by parasites: parasitol. Today 15:28–32

    Article  CAS  Google Scholar 

  • Robledo D, Gutiérrez AP, Barría A, Yáñez JM, Houston RD (2018) Gene expression response to sea lice in Atlantic salmon skin: RNA sequencing comparison between resistant and susceptible animals. Front Genet 9:287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savan R (2018) Alternative splicing in innate antiviral immunity. J Interferon Cytokine Res 38:317–318

    Article  CAS  PubMed  Google Scholar 

  • Schaub A, Glasmacher E (2017) Splicing in immune cells-mechanistic insights and emerging topics. Int Immunol 29:173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Park JW, Lu ZX, Lin L, Henry MD, Wu YN, Zhou Q, Xing Y (2014) rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc Natl Acad Sci U S A 111:E5593–E5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soneson C, Love MI, Robinson MD (2015) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4:1521

  • Su Z, Huang D (2021) Alternative splicing of pre-mrna in the control of immune activity. Genes 12:574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland BJ, Koczka KW, Yasuike M, Jantzen SG, Yazawa R, Koop BF, Jones SR (2014) Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis. BMC Genomics 15:200

  • Sutherland BJG, Covello JM, Friend SE, Poley JD, Koczka KW, Purcell SL, MacLeod TL, Donovan BR, Pino J, González-Vecino JL, Gonzalez J, Troncoso J, Koop BF, Wadsworth SL, Fast MD (2017) Host-parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (Lepeophtheirus salmonis) by Atlantic salmon (Salmo salar). FACETS 2:477–495

    Article  Google Scholar 

  • Susdorf R, Salama NKG, Todd CD, Hillman RJ, Elsmere P, Lusseau D (2018) Context-dependent reduction in somatic condition of wild Atlantic salmon infested with sea lice. Mar Ecol Prog Ser 606:91–104

    Article  Google Scholar 

  • Tadiso TM, Krasnov A, Skugor S, Afanasyev S, Hordvik I, Nilsen F (2011) Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition. BMC Genomics 12:141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan S, Wang W, Zhong X, Tian C, Niu D, Bao L, Zhou T, Jin Y, Yang Y, Yuan Z, Gao D, Dunham R, Liu Z (2018) Increased alternative splicing as a host response to Edwardsiella ictaluri infection in catfish. Mar Biotechnol 20:729–738

    Article  CAS  Google Scholar 

  • Tan S, Wang W, Tian C, Niu D, Zhou T, Yang Y, Gao D, Liu Z (2019) Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol 91:188–193

    Article  CAS  PubMed  Google Scholar 

  • Tapial J, Ha K, Sterne-Weiler T, Gohr A, Braunschweig U, Hermoso-Pulido A, Quesnel-Vallières M, Permanyer J, Sodaei R, Marquez Y, Cozzuto L, Wang X, Gómez-Velázquez M, Rayon T, Manzanares M, Ponomarenko J, Blencowe BJ, Irimia M (2017) An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 27:1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiberi S, Robinson MD (2020) BANDITS: Bayesian differential splicing accounting for sample-to-sample variability and mapping uncertainty. Genome Biol 21:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokheim C, Park JW, Xing Y (2014) PrimerSeq: design and visualization of RT-PCR primers for alternative splicing using RNA-seq data. Genom Proteom Bioinform 12:105–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai HY, Hamilton A, Tinch AE, Guy DR, Bron JE, Taggart JB, Gharbi K, Stear M, Matika O, Pong-Wong R, Bishop SC, Houston RD (2016) Genomic prediction of host resistance to sea lice in farmed Atlantic salmon populations. Genet Sel Evol 48:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Twyffels L, Gueydan T, Kruys V (2011) Shuttling SR proteins: more than splicing factors. FEBS 278:3246–3255

    Article  CAS  Google Scholar 

  • Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Nowak BF, Taylor RG, Rise ML (2021) Transcriptomic profiling in fins of Atlantic salmon parasitized with sea lice: evidence for an early imbalance between chalimus-induced immunomodulation and the host’s defense response. Int J Mol Sci 21:2417

    Article  CAS  Google Scholar 

  • Urbina MA, Cumillaf JP, Paschke K, Gebauer P (2019) Effects of pharmaceuticals used to treat salmon lice on non-target species: evidence from a systematic review. Sci Total Environ 649:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • van Die I, Cummings RD (2017) The mannose receptor in regulation of helminth-mediated host immunity. Front Immunol 8:1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GN, Fast MD, Johnson SC (2008) Physiology and immunology of Lepeophtheirus salmonis infections of salmonids. Trends Parasitol 24:176–183

    Article  CAS  PubMed  Google Scholar 

  • Wagner RE, Frye M (2021) Noncanonical functions of the serine-arginine-rich splicing factor (SR) family of proteins in development and disease. Bioessays 43:e2000242

  • Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Lin J, Zhang J, Min QH, Yang WM, Wang XZ (2015) Mechanism of alternative splicing and its regulation (review). Biomed Rep 3:152–158

    Article  CAS  PubMed  Google Scholar 

  • Wang XG, Ju ZH, Hou MH, Jiang Q, Yang CH, Zhang Y, Sun Y, Li RL, Wang CF, Zhong JF, Huang JM (2016) Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis. PLoS ONE 11:e0159719

  • West KO, Scott HM, Torres-Odio S, West AP, Patrick KL, Watson RO (2019) The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages. Cell Rep 29:1594–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickramarachchi DC, Theofilopoulos AN, Dwight HK (2010) Immune pathology associated with altered actin cytoskeleton regulation. Autoimmunity 43:64–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021) ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2:100141

  • Yabas M, Elliott H, Hoyne GF (2015) The role of alternative splicing in the control of immune homeostasis and cellular differentiation. Int J Mol Sci 17:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Tang F, Zhu H (2014) Alternative splicing in plant immunity. Int J Mol Sci 15:0424–10445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XC, Gassmann W (2017) Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol 145:1577–1557

    Article  CAS  Google Scholar 

  • Zindrili R, Krol E, Mente E, Douglas A, Martin SAM (2019) Impact of sea lice (Caligus rogercresseyi) infection levels on skin transcriptome in Atlantic salmon (Salmo salar). Fish Shellfish Immunol 91:436–437

    Article  Google Scholar 

Download references

Funding

This research was supported by CORFO-INNOVA Chile 12IDL2-16192.

Author information

Authors and Affiliations

Authors

Contributions

S.B., F.L., and R.V. designed the study, implemented the bioinformatics pipeline, and drafted the manuscript; J.M and O.G. participated in writing the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Rodrigo Vidal.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 73 KB)

Supplementary file2 (XLSX 163 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, S., Leiva, F., Moya, J. et al. Unveiling the Role of Dynamic Alternative Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon. Mar Biotechnol 25, 223–234 (2023). https://doi.org/10.1007/s10126-023-10196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-023-10196-6

Keywords

Navigation