Skip to main content
Log in

Production of Arachidonic and Eicosapentaenoic Acids by the Marine Oomycete Halophytophthora

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids (PUFAs) are fatty acids with more than one double bond in the chemical structure. Arachidonic acid (ARA, 20:4 (n-6)) and eicosapentaenoic acid (EPA, 22:5 (n-3)) are common PUFAs with beneficial health effects. Marine fish and meat are the main sources of omega-3 and omega-6 fatty acids in human’s diet, respectively. In particular, there is a general decline in fish catch, implicating the need for an alternative source of omega-3 fatty acids. Previous studies have examined the production of polyunsaturated fatty acids including ARA and EPA by various microorganisms, including microalgae, fungi, and thraustochytrids. In this study, the production of ARA and EPA by 10 isolates of four estuarine Halophytophthora species (Halophytophthora avicenniae, Halophytophthora polymorphica, Halophytophthora vesicula, and Halophytophthora spinosa var. spinosa) cultured from fallen mangrove leaves in Taiwan was examined. The yield of ARA ranged from 0.004 to 0.052 g/L with the highest yield of ARA obtained from H. spinosa var. spinosa IMB162, but no or a very low level of EPA was produced by IMB162. For EPA production by Halophytophthora spp., the yield ranged from 0 to 0.047 g/L. Percentage of ARA in total fatty acid ranged between 7.16 and 25.02 %. One-way ANOVA analysis using Tukey Test (p ≥ 0.05) suggested that there is significant difference in the percentage of EPA in total fatty acid produced by the isolates, which ranged from 0.01 to 18.42 %. BODIPY 505/515 fluorescent staining suggests that lipid bodies were evenly distributed in the mycelia of Halophytophthora species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bajpai PK, Bajpai P, Ward OP (1992) Optimisation of culture conditions for production of eicosapentaenoic acid byMortierella elongata NRRL 5513. J Ind Microbiol 9:11–17

    Article  CAS  Google Scholar 

  • Chen G, Fan KW, Lu FP, Li Q, Aki T, Chen F, Jiang Y (2010) Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. N Biotechnol 27:382–389

    Article  CAS  PubMed  Google Scholar 

  • Cheng MH, Walker TH, Hulbert GJ, Raman DR (1999) Fungalproduction of eicosapentaenoic acid and arachidonic acids from industrial waste streams and crude soybean oil. Biores Technol 67:101–110

    Article  CAS  Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genet Biol 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Fan KW, Aki T, Chen F, Jiang Y (2010) Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J Microb Biot 26:1303–1309

    Article  CAS  Google Scholar 

  • Fell JW, Master IM (1980) The association and potential role of fungi in mangrove detrital systems. Bot Mar 23:257–263

    Google Scholar 

  • Furuita H, Takeuchi T, Watanabe T, Fujimoto H, Sekiya S, Imaizumi K (1996) Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid, and highly unsaturated fatty acids. Fisheries Sci 62:372–379

    CAS  Google Scholar 

  • Gaastra W, Lipman LJ, De Cock AW, Exel TK, Pegge RB, Scheurwater J, Vilela R, Mendoza L (2010) Pythium insidiosum: an overview. Vet Microbiol 146:1–16

    Article  PubMed  Google Scholar 

  • Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of high added-value compounds—a brief review of recent work. Biotechnol Prog 27:597–613

    Article  CAS  PubMed  Google Scholar 

  • Ho HH, Jong SC (1990) Halophytophthora gen. nov., a new member of the family Pythiaceae. Mycotaxon 36:377–382

    Google Scholar 

  • Hulvey J, Telle S, Nigrelli L, Lamour K, Thines M (2010) Salisapiliaceae—a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia 25:109–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jang HD, Lin YY, Yang SS (2005) Effect of culture media conditions on polyunsaturated fatty acids production by Mortierella alpine. Biores Technol 96:1633–1644

    Article  CAS  Google Scholar 

  • Jareonkitmongkol S, Shimizu S, Yamada H (1993) Occurrence of two nonmethylene-interrupted Δ5-polyunsaturated fatty acids in a Δ6-desaturase-defective mutant of the fungus, Mortierella alpina 1S-4. Biochim Biophys Acta 1167:137–141

    Article  CAS  PubMed  Google Scholar 

  • Kainz M, Arts MT, Mazumder A (2004) Essential fatty acids in the planktonic food web and their ecological role for highertrophic levels. Limnol Oceanogr 49:1784–1793

    Article  CAS  Google Scholar 

  • Kroes R, Schaefer EJ, Squire RA, Williams GM (2003) A review of the safety ofDHA45 − oil. Food Chem Toxicol 41:1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Lara E, Belbahri L (2011) SSU rRNA reveals major trends in oomycete evolution. Fungal Divers 49:93–100

    Article  Google Scholar 

  • Leano EM (2002) Ecology of straminipiles from mangrove habitats. Fungal Divers 7:111–134

    Google Scholar 

  • Leano EM, Vrijmoed LLP, Jones EBG (1998) Zoospore chemotaxis of two mangrove strains of Halophytophthora vesicula from Mai Po, Hong Kong. Mycologia 90:1001–1008

    Article  Google Scholar 

  • Leano EM, Jones EBG, Vrijmoed LLP (2000) Why are Halophytophthora species well adapted to mangrove habitats? Fungal Divers 5:131–151

    Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev PlantT Sci 18:111–181

    Article  CAS  Google Scholar 

  • Nagano N, Taoka Y, Honda D, Hayashi M (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 58:623–628

    Article  CAS  PubMed  Google Scholar 

  • Nakagiri A (2000) Ecology and diversity of Halophytophthora species. Fungal Divers 5:153–164

    Google Scholar 

  • Nakagiri A (2002) Halophytophthora species from tropical and subtropical mangroves: a review of their characteristics. Fungal Divers 7:1–14

    Google Scholar 

  • Newell SY, Miller JD, Fell JW (1987) Rapid and pervasive occupation of fallen mangrove leaves by a marine zoosporic fungus. Appl Environ Microbiol 53:2464–2469

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saito H, Yamashiro R, Alsalvar C, Konno T (1999) Influence of diet on fatty acids of three subtropical fish, subfamily Caesioninae (Caesiodiagrama and C. tile) and family Siganidae (Siganus canaliculatus). Lipids 34:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Kawashima K, Akimoto K, Yamada H (1989) Microbial conversion of an oil containing c-linolenic acid to an oil containing eicosapentaenoic acid. J Am Oil Chem Soc 66:342–347

    Article  CAS  Google Scholar 

  • Shirasaka N, Shimizu S (1995) Production of eicosapentaenoic acid by Saprolegnia sp. 28YTF-1. J Am Oil Chem Soc 72:1545–1549

    Article  CAS  Google Scholar 

  • Vazhappilly R, Chen F (1998) Heterotrophic production potential of omega-3polyunsaturated fatty acids by microalgae and algae-like microorganisms. Bot Mar 41:553–558

    Article  CAS  Google Scholar 

  • Velmurugan N, Sathishkumar Y, Yim SS, Lee YS, Park MS, Yang JW, Jeong KJ (2014) Study of cellular development and intracellular lipid bodies accumulation in the thraustochytrid Aurantiochytrium sp. KRS101. Bioresour Technol 161:149–154

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and application. Academic, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Lai Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, KL., Lin, HJ., Lin, HY. et al. Production of Arachidonic and Eicosapentaenoic Acids by the Marine Oomycete Halophytophthora . Mar Biotechnol 17, 121–129 (2015). https://doi.org/10.1007/s10126-014-9600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-014-9600-1

Keywords

Navigation