Skip to main content

Advertisement

Log in

Quantitative Trait Loci Affecting Response to Crowding Stress in an F2 Generation of Rainbow Trout Produced Through Phenotypic Selection

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Selective breeding programs for salmonids typically aim to improve traits associated with growth and disease resistance. It has been established that stressors common to production environments can adversely affect these and other traits which are important to producers and consumers. Previously, we employed phenotypic selection to create families that exhibit high or low plasma cortisol concentrations in response to crowding stress. Subsequent crosses of high × low phenotypes founded a multigenerational breeding scheme with the aim of dissecting the genetic basis for variation underlying stress response through the identification of quantitative trait loci (QTL). Multiple methods of QTL analyses differing in their assumptions of homozygosity of the causal alleles in the grandparental generation yielded similar results in the F1 generation, and the analysis of two stress response phenotype measurement indexes were highly correlated. In the current study, we conducted a genome scan with microsatellites to detect QTL in the F2 generation of two families created through phenotypic selection and having larger numbers of offspring than families screened in the previous generation. Seven suggestive and three significant QTL were detected, seven of which were not previously detected in the National Center for Cool and Cold Water Aquaculture germplasm, bringing the total number of chromosomes containing significant and suggestive stress response QTL to 4 and 15, respectively. One significant QTL which peaks at 7 cM on chromosome Omy12 spans 12 cM and explains 25 % of the phenotypic variance in family 2008052 particularly warrants further investigation. Five QTL with significant parent-of-origin effects were detected in family 2008052, including two QTL on Omy12. The 95 % confidence intervals for the remaining QTL we detected were broad, requiring validation and fine mapping with other genotyping approaches and mapping strategies. These results will facilitate identification of potential casual alleles that can be employed in strategies aimed at better understanding the genetic and physiological basis of stress responses to crowding in rainbow trout aquaculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

QTL:

Quantitative trait loci

NCCCWA:

National Center for Cool and Cold Water Aquaculture

BLUP:

Best linear unbiased prediction

EBV:

Estimated breeding value

MSD:

Mendelian segregation distortion

Omy1:

Oncorhynchus mykiss chromosome 1

References

  • Backstrom T, Schjolden J, Overli O, Thornqvist PO, Winberg S (2011) Stress effects on AVT and CRF systems in two strains of rainbow trout (Oncorhynchus mykiss) divergent in stress responsiveness. Horm Behav 59:180–186. doi:10.1016/j.yhbeh.2010.11.008

    Article  PubMed  Google Scholar 

  • Boutin-Ganache I, Raposo M, Raymond M, Deschepper CF (2001) M13-tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31(24–6):28

    Google Scholar 

  • De Koning DJ, Rattink AP, Harlizius B, Van Arendonk JM, Brascamp EW, Groenen MM (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci U S A 97:7947–7950

    Article  PubMed  Google Scholar 

  • De Koning DJ, Bovenhuis H, Van Arendonk JM (2002) On the detection of imprinted quantitative trait loci in experimental crosses of outbred species. Genetics 161:931–938

    PubMed  Google Scholar 

  • De Koning DJ, Windsor D, Hocking PM, Burt DW, Law A, Haley CS, Morris A, Vincent J, Griffin H (2003) Quantitative trait locus detection in commercial broiler lines using candidate regions. J Anim Sci 81:1158–1165

    PubMed  Google Scholar 

  • Desautes C, Bidanelt JP, Milant D, Iannuccelli N, Amigues Y, Bourgeois F, Caritez JC, Renard C, Chevalet C, Mormede P (2002) Genetic linkage mapping of quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. J Anim Sci 80:2276–2285

    PubMed  CAS  Google Scholar 

  • Fevolden SE, Refstie T, Røed KH (1992) Disease resistance in rainbow trout (Oncorhynchus mykiss) selected for stress response. Aquaculture 104:19–29

    Article  Google Scholar 

  • Fevolden S-E, Røed KH, Fjalestad KT (2002) Selection response of cortisol and lysozyme in rainbow trout and correlation to growth. Aquaculture 205:61–75

    Article  CAS  Google Scholar 

  • Fevolden S-E, Røed KH, Fjalestad K (2003) A combined salt and confinement stress enhances mortality in rainbow trout (Oncorhynchus mykiss) selected for high stress responsiveness. Aquaculture 216:67–76

    Article  Google Scholar 

  • Freyer G, Kuhn C, Weikard R, Zhang Q, Mayer M, Hoeschele I (2002a) Multiple QTL on chromosome six in dairy cattle affecting yield and content traits. J Anim Breed Genet 119:69–82

    Article  Google Scholar 

  • Freyer G, Stricker C, Kuhn C (2002b) Comparison of estimated breeding values and daughter yield deviations used in segregation and linkage analyses. Czech Journal of Animal Science 47:247–252

    Google Scholar 

  • Gentleman RC, Carey VJ, BatesDM BB, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 2.0. VSN, Hemel Hempstead

    Google Scholar 

  • Gjedrem T (1992) Breeding plans for rainbow-trout. Aquaculture 100:73–83

    Article  Google Scholar 

  • Goll MG, Halpern ME (2011) DNA methylation in zebrafish. Prog Mol Biol Transl Sci 101:193–218. doi:10.1016/B978-0-12-387685-0.00005-6

    Article  PubMed  CAS  Google Scholar 

  • Haffray P, Vandeputte M, Petit V, Pincent C, Chatain B, Chapuis H, Meriaux JC, Coudurier B, Quillet E, Dupont-Nivet M (2012) Minimizing maternal effect in salmonid families mixed since eyed stages and a posteriori DNA-pedigreed. Livest Sci 150:170–178. doi:10.1016/j.livsci.2012.08.017

    Article  Google Scholar 

  • Hager R, Cheverud JM, Wolf JB (2008) Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 178:1755–1762. doi:10.1534/genetics.107.080697

    Article  PubMed  Google Scholar 

  • Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least-squares. Genetics 136:1195–1207

    PubMed  CAS  Google Scholar 

  • Henryon M, Berg P, Olesen NJ, Kjaer TE, Slierendrecht WJ, Jokumsen A, Lund I (2005) Selective breeding provides an approach to increase resistance of rainbow trout (Oncorhynchus mykiss) to the diseases, enteric redmouth disease, rainbow trout fry syndrome, and viral haemorrhagic septicaemia. Aquaculture 250:621–636. doi:10.1016/j.aquaculture.2004.12.022

    Article  Google Scholar 

  • Hoskonen P, Pirhonen J (2006) Effects of repeated handling, with or without anaesthesia, on feed intake and growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac Res 37:409–415

    Article  Google Scholar 

  • Imumorin IG, Kim EH, Lee YM, De Koning DJ, Van Arendonk JA, De Donato M, Taylor JF, Kim JJ (2011) Genome scan for parent-of-origin QTL effects on bovine growth and carcass traits. Front Genet 2:44. doi:10.3389/fgene.2011.00044

    Article  PubMed  Google Scholar 

  • Janhunen M, Kause A, Vehvilainen H, Jarvisalo O (2012) Genetics of microenvironmental sensitivity of body weight in rainbow trout (Oncorhynchus mykiss) selected for improved growth. PLoS One 7:e38766. doi:10.1371/journal.pone.0038766

    Article  PubMed  CAS  Google Scholar 

  • Janss LLG (2008) iBay manual version 1.46. Janss Biostatistics, Leiden, P.O. Box 535

    Google Scholar 

  • Johansen IB, Sandvik GK, Nilsson GE, Bakken M, Overli O (2011) Cortisol receptor expression differs in the brains of rainbow trout selected for divergent cortisol responses. Comp Biochem Physiol Part D Genomics Proteomics 6:126–132. doi:10.1016/j.cbd.2010.11.002

    Article  PubMed  Google Scholar 

  • Kause A, Paananen T, Ritola O, Koskinen H (2007) Direct and indirect selection of visceral lipid weight, fillet weight, and fillet percentage in a rainbow trout breeding program. J Anim Sci 85:3218–3227. doi:10.2527/jas.2007-0332

    Article  PubMed  CAS  Google Scholar 

  • Knott SA (2005) Regression-based quantitative trait loci mapping: robust, efficient and effective. Philosophical Transactions of the Royal Society B-Biological Sciences 360:1435–1442. doi:10.1098/rstb.2005.1671

    Article  CAS  Google Scholar 

  • Knott SA, Elsen JM, Haley CS (1996) Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theor Appl Genet 93:71–80

    Article  Google Scholar 

  • Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820

    Article  Google Scholar 

  • Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller M, Andersson L (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069–1080

    PubMed  CAS  Google Scholar 

  • Lankford SE, Weber GM (2006) Associations between plasma growth hormone, insulin-like growth factor-I, and cortisol with stress responsiveness and growth performance in a selective breeding program for rainbow trout. N Am J Aquacult 68:151–159. doi:10.1577/A05-014.1

    Article  Google Scholar 

  • Leach RJ, Craigmile SC, Knott SA, Williams JL, Glass EJ (2010) Quantitative trait loci for variation in immune response to a Foot-and-Mouth Disease virus peptide. BMC Genet. doi:10.1186/1471-2156-11-107

    PubMed  Google Scholar 

  • Leeds TD, Silverstein JT, Weber GM, Vallejo RL, Palti Y, Rexroad CE 3rd, Evenhuis J, Hadidi S, Welch TJ, Wiens GD (2010) Response to selection for bacterial cold water disease resistance in rainbow trout. J Anim Sci 88:1936–1946. doi:10.2527/jas.2009-2538

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre F, Bugeon J, Aupérin B, Aubin J (2008) Rearing oxygen level and slaughter stress effects on rainbow trout flesh quality. Aquaculture 284:81–89

    Article  Google Scholar 

  • Matise TC, Perlin M, Chakravarti A (1994) Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat Genet 6:384–390. doi:10.1038/ng0494-384

    Article  PubMed  CAS  Google Scholar 

  • Mcgowan RA, Martin CC (1997) DNA methylation and genome imprinting in the zebrafish, Danio rerio: some evolutionary ramifications. Biochem Cell Biol 75:499–506

    Article  PubMed  CAS  Google Scholar 

  • Merkin GV, Roth B, Gjerstad C, Dahl-Paulsen E, Nortvedt R (2010) Effect of pre-slaughter procedures on stress responses and some quality parameters in sea-farmed rainbow trout (Oncorhynchus mykiss). Aquaculture 309:231–235

    Article  Google Scholar 

  • Navarro-Martin L, Vinas J, Ribas L, Diaz N, Gutierrez A, Di Croce L, Piferrer F (2011) DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet 7:e1002447. doi:10.1371/journal.pgen.1002447

    Article  PubMed  CAS  Google Scholar 

  • Ott J (1999) Analysis of human genetic linkage. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Overli O, Pottinger TG, Carrick TR, Overli E, Winberg S (2001) Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain Behav Evol 57:214–224

    Article  PubMed  CAS  Google Scholar 

  • Øverli Ø, Sørensen C, Kiessling A, Pottinger TG, Gjøen HM (2006) Selection for improved stress tolerance in rainbow trout (Oncorhynchus mykiss) leads to reduced feed waste. Aquaculture 261:776–781

    Article  Google Scholar 

  • Overturf K, Bullock D, Lapatra S, Hardy R (2004) Genetic selection and molecular analysis of domesticated rainbow trout for enhanced growth on alternative diet sources. Environ Biol Fish 69:409–418

    Article  Google Scholar 

  • Pemmasani JK, Pottinger TG, Cairns MT (2011) Analysis of stress-induced hepatic gene expression in rainbow trout (Oncorhynchus mykiss) selected for high- and low-responsiveness to stress. Comp Biochem Physiol Part D Genomics Proteomics 6:406–419. doi:10.1016/j.cbd.2011.09.001

    Article  PubMed  CAS  Google Scholar 

  • Pickering AD (1992) Rainbow trout husbandry: management of the stress response. Aquaculture 100:125–139

    Article  Google Scholar 

  • Poli BM, Parisi G, Scappini F, Zampacavallo G (2005) Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquacult Int 13:29–49

    Article  Google Scholar 

  • Pottinger TG (2006) Context dependent differences in growth of two rainbow trout (Oncorhynchus mykiss) lines selected for divergent stress responsiveness. Aquaculture 256:140–147

    Article  Google Scholar 

  • Pottinger TG, Carrick TR (1999) Modification of the plasma cortisol response to stress in rainbow trout by selective breeding. Gen Comp Endocrinol 116:122–132. doi:10.1006/gcen.1999.7355

    Article  PubMed  CAS  Google Scholar 

  • Pottinger TG, Carrick TR (2000) Indicators of reproductive performance in rainbow trout Oncorhynchus mykiss (Walbaum) selected for high and low responsiveness to stress. Aquac Res 31:367–375. doi:10.1046/j.1365-2109.2000.00450.x

    Article  Google Scholar 

  • Pottinger TG, Carrick TR (2001a) ACTH does not mediate divergent stress responsiveness in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 129:399–404

    Article  PubMed  CAS  Google Scholar 

  • Pottinger TG, Carrick TR (2001b) Stress responsiveness affects dominant–subordinate relationships in rainbow trout. Horm Behav 40:419–427. doi:10.1006/hbeh.2001.1707

    Article  PubMed  CAS  Google Scholar 

  • Rebl A, Verleih M, Kollner B, Korytar T, Goldammer T (2012a) Duplicated NELL2 genes show different expression patterns in two rainbow trout strains after temperature and pathogen challenge. Comp Biochem Physiol B Biochem Mol Biol 163:65–73. doi:10.1016/j.cbpb.2012.05.001

    Article  PubMed  CAS  Google Scholar 

  • Rebl A, Verleih M, Korytar T, Kuhn C, Wimmers K, Kollner B, Goldammer T (2012b) Identification of differentially expressed protective genes in liver of two rainbow trout strains. Vet Immunol Immunopathol 145:305–315. doi:10.1016/j.vetimm.2011.11.023

    Article  PubMed  CAS  Google Scholar 

  • Rexroad CE 3rd, Palti Y, Gahr SA, Vallejo RL (2008) A second generation genetic map for rainbow trout (Oncorhynchus mykiss). BMC Genet 9:74. doi:10.1186/1471-2156-9-74

    Article  PubMed  Google Scholar 

  • Rexroad CE, Vallejo RL, Liu S, Palti Y, Weber GM (2012) A survey of QTL affecting stress response to crowding in rainbow trout in a single broodstock population. BMC Genet 13:97

    Article  PubMed  Google Scholar 

  • Rowe SJ, Pong-Wong R, Haley CS, Knott SA, De Koning DJ (2009) Detecting parent of origin and dominant QTL in a two-generation commercial poultry pedigree using variance component methodology. Genet Sel Evol. doi:10.1186/1297-9686-41-6

    PubMed  Google Scholar 

  • Sae-Lim P, Komen H, Kause A, Van Arendonk JM, Barfoot AJ, Martin KE, Parsons JE (2012) Defining desired genetic gains for rainbow trout breeding objective using analytic hierarchy process. J Anim Sci 90:1766–1776. doi:10.2527/Jas2011-4267

    Article  PubMed  CAS  Google Scholar 

  • Sandor C, Georges M (2008) On the detection of imprinted quantitative trait loci in line crosses: effect of linkage disequilibrium. Genetics 180:1167–1175. doi:10.1534/genetics.108.092551

    Article  PubMed  Google Scholar 

  • Sas (2007) SAS 9.1.3 help and documentation. SAS Institute, Cary

    Google Scholar 

  • Schjolden J, Backstrom T, Pulman KG, Pottinger TG, Winberg S (2005) Divergence in behavioural responses to stress in two strains of rainbow trout (Oncorhynchus mykiss) with contrasting stress responsiveness. Horm Behav 48:537–544. doi:10.1016/j.yhbeh.2005.04.008

    Article  PubMed  Google Scholar 

  • Seaton G, Hernandez J, Grunchec JA, White I, Allen J, De Koning D J, Wei W, Berry D, Haley C & Knott S (2006) GridQTL: A Grid Portal for QTL mapping of compute intensive datasets. 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte, Brazil

  • Silverstein JT, Rexroad CE, King TL (2004) Genetic variation measured by microsatellites among three strains of domesticated rainbow trout (Oncorhynchus mykiss, Walbaum). Aquac Res 35:40–48

    Article  CAS  Google Scholar 

  • Thomsen H, Reinsch N, Xu N, Looft C, Grupe S, Kuhn C, Brockmann GA, Schwerin M, Leyhe-Horn B, Hiendleder S, Erhardt G, Medjugorac I, Russ I, Forster M, Brenig B, Reinhardt F, Reents R, Blumel J, Averdunk G, Kalm E (2001) Comparison of estimated breeding values, daughter yield deviations and de-regressed proofs within a whole genome scan for QTL. J Anim Breed Genet 118:357–370

    Article  Google Scholar 

  • Trenzado CE, Carrick TR, Pottinger TG (2003) Divergence of endocrine and metabolic responses to stress in two rainbow trout lines selected for differing cortisol responsiveness to stress. Gen Comp Endocrinol 133:332–340

    Article  PubMed  CAS  Google Scholar 

  • Tuiskula-Haavisto M, De Koning D-J, Honkatukia M, Schulman NF, Mäki-Tanila A, Vilkki J (2004) Quantitative trait loci with parent-of-origin effects in chicken. Genetics Research 84:57–66. doi:10.1017/S0016672304006950

    Article  CAS  Google Scholar 

  • Uddin MJ, Duy DN, Cinar MU, Tesfaye D, Tholen E, Juengst H, Looft C, Schellander K (2011) Detection of quantitative trait loci affecting serum cholesterol, LDL, HDL, and triglyceride in pigs. BMC Genet. doi:10.1186/1471-2156-12-62

    PubMed  Google Scholar 

  • Vallejo RL, Rexroad CE 3rd, Silverstein JT, Janss LL, Weber GM (2009) Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis. J Anim Sci 87:3490–3505. doi:10.2527/jas.2008-1616

    Article  PubMed  CAS  Google Scholar 

  • Venturelli PA, Shuter BJ, Murphy CA (2009) Evidence for harvest-induced maternal influences on the reproductive rates of fish populations. P R Soc B 276:919–924. doi:10.1098/rspb.2008.1507

    Article  Google Scholar 

  • Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020

    PubMed  CAS  Google Scholar 

  • Weber GM, Silverstein JT (2007) Evaluation of a stress response for use in a selective breeding program for improved growth and disease resistance in rainbow trout. N Am J Aquacult 69:69–79. doi:10.1577/A05-103.1

    Article  Google Scholar 

  • Weber GM, Vallejo RL, Lankford SE, Silverstein JT, Welch TJ (2008) Cortisol response to a crowding stress: heritability and association with disease resistance to Yersinia ruckeri in rainbow trout. N Am J Aquacult 70:425–433. doi:10.1577/A07-059.1

    Article  Google Scholar 

  • Weller JI (2009) Quantitative trait analysis in animals. CABI, Cambridge

    Google Scholar 

  • Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the following individuals for providing excellent technical assistance including Roseanna Long, Kristy Shewbridge, and Brian Smith for genotyping; Lisa Radler, Jill Birkett, Mark Hostuttler and David Payne for phenotyping fish for stress response; and Josh Kretzer, Jim Everson, Kyle Jenkins, Jenea McGowan, Kevin Melody for animal care. We also thank Guangtu Gao for processing the genotype data files. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caird E. Rexroad.

Additional information

Caird E. Rexroad and Roger L. Vallejo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

ESM 2

(DOCX 40 kb)

ESM 3

(DOCX 15 kb)

ESM 4

(DOCX 20 kb)

ESM 5

(DOCX 19 kb)

ESM 6

(XLSX 38 kb)

ESM 7

(DOCX 21 kb)

ESM 8

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rexroad, C.E., Vallejo, R.L., Liu, S. et al. Quantitative Trait Loci Affecting Response to Crowding Stress in an F2 Generation of Rainbow Trout Produced Through Phenotypic Selection. Mar Biotechnol 15, 613–627 (2013). https://doi.org/10.1007/s10126-013-9512-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-013-9512-5

Keywords

Navigation