Skip to main content

Advertisement

Log in

Inhibition of pds Gene Expression via the RNA Interference Approach in Dunaliella salina (Chlorophyta)

  • Short Communication
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

To investigate the potential of double-stranded RNA interferencing with gene expression in Dunaliella salina, a plasmid pBIRNAI-Dsa was constructed to express hairpin RNA (hpRNA) containing sequences homologous to phytoene desaturase gene (pds), a key gene in carotenoid biosynthesis, and transformed into D. salina by electroporation. The relative transcription level of pds in pBIRNAI-Dsa–treated cells to nontreated cells was quantitated and the gene silencing efficiency by RNAi was evaluated via real-time polymerase chain reaction (PCR). The transcriptions of pds of the pBIRNAI-Dsa–treated group changed compared to those of the control group, and the \(2^{{ - \Delta \Delta {\text{C}}_{{\text{T}}} }} \) was lowest on the 7th day, corresponding to 0.281265-fold of the relative pds control transcript; a relatively strong gene inhibition effect was therefore deduced. The transcript of pds may be modulated in a wide range, and a reduced transcription even to 28% of the normal level may be tolerated for its survival. This study shows that dsRNA-mediated genetic interference can induce sequence-specific inhibition of gene expression and pBIRNAI-Dsa can be used for transient suppression of gene expression in D. salina. The aim of this study was to exploit dsRNA-mediated gene silencing and to provide a foundation for gene function research in D. salina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Angell SM, Baulcombe DC (1999) Potato virus X amplicon-mediated silencing of nuclear genes. Plant J 20, 357–362

    Article  PubMed  CAS  Google Scholar 

  • Brown AD, Borowitzka LJ (1979) Halotolerance of Dunaliella. In Biochemistry and Physiology of Protozoa Vol. 1, 2nd ed, Levandowsky M, Hutner SH (eds). (New York: Academic Press, New York), pp 139–190

    Google Scholar 

  • Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97, 4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Faivre-Rampant O, Gilroy EM, Hrubikova K, Hein I, Millam S, Loake GJ, Birch P, TaylorM, Lacomme C (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134, 1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CCC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418, 244–251

    Article  PubMed  CAS  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Realtime quantitative PCR. Genome Res 6, 986–994

    Article  PubMed  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30, 289–295

    Article  PubMed  CAS  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30, 315–327

    Article  PubMed  CAS  Google Scholar 

  • Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418, 435–438

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled act in the wingless pathway. Cell 95, 1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92, 1679–1683

    Article  PubMed  CAS  Google Scholar 

  • Masclaux F, Charpenteau M, Takahashi T, Pont-Lezica R, Galaud JP (2004) Gene silencing using a heat-inducible RNAi system in Arabidopsis. Biochem Biophys Res Commun 321, 364–369

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Nowak K, Sharma VK, Schulze J, Mendel RR, hansch R (2004) Vectors for RNAi technology in poplar. Plant Biol (Stuttg) 6, 100–104

    Article  CAS  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45, 490–495

    Article  PubMed  CAS  Google Scholar 

  • Misquitta L, Paterson BM (1999) Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci USA 96, 1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Pickford AS, Cogoni C (2003) RNA-mediated gene silencing. Cell Mol Life Sci 60, 871–882

    PubMed  CAS  Google Scholar 

  • Raponi M, Arndt GM (2003) Double-stranded RNA-mediated gene silencing in fission yeast. Nucl Acids Res 31, 4481–4489

    Article  PubMed  CAS  Google Scholar 

  • Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25, 237–245

    Article  PubMed  CAS  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937–946

    Article  PubMed  CAS  Google Scholar 

  • Schramke V, Allshire R (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301, 1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Mello C (1998) A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev 12, 943–955

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407, 319–320

    Article  PubMed  CAS  Google Scholar 

  • Somerville C (2000) Genomics: plant biology 2010. Science 290, 2077–2078

    Article  PubMed  CAS  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PM, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129, 1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants—defense and counterdefense. Science 292, 2277–2280

    Article  PubMed  CAS  Google Scholar 

  • Wang MB, Abbott D, Waterhouse PM (2000) A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol 1, 401–410

    Article  Google Scholar 

  • Wang MB, Waterhouse PM (2001) Application of gene silencing in plants. Curr Opin Plant Biol 5, 146–150

    Article  Google Scholar 

  • Waterhouse PM, Graham HW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95, 13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411, 834–842

    Article  PubMed  CAS  Google Scholar 

  • Wesley V, Helliwell C, Smith N, Wang MB, Rouse D, Liu Q, Gooding P, Singh S, Abbott D, Stoutjesdijk P (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27, 581–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank two anonymous referees for their valuable advice and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Sui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Zhang, X., Sui, Z. et al. Inhibition of pds Gene Expression via the RNA Interference Approach in Dunaliella salina (Chlorophyta). Mar Biotechnol 10, 219–226 (2008). https://doi.org/10.1007/s10126-007-9056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-007-9056-7

Keywords

Navigation