Skip to main content

Advertisement

Log in

Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Plant-microbe interactions such as rhizobacteria legumes are interesting in organic farming that has undergone significant expansion in the world. The organic agriculture is as an environment-friendly technique and a sustainable alternative to intensive agricultural system. Three types of soil were chosen, organic (ORG), conventional (CON), and fallow land (NA) to isolate soil bacteria-nodulating Medicago sativa, in order to develop microbial inoculants for use in agricultural sustainable system. Soil analysis revealed significant higher amounts of total nitrogen, organic carbon, total phosphorus, and matter detected in ORG. As for heavy metals, ORG showed high Cu content due to the authorized chemical use in organic farming. A sample of 130 bacteria was isolated from Medicago sativa nodule, genetically characterized by PCR/RFLP of ribosomal 16S RNAs, and a great dominance of Sinorhizobium meliloti (88.4%, 73.8%, and 55.5%) is obtained among NA-, CON-, and ORG-managed soils, respectively. The ORG showed the high bacterial diversity with 13.3% of non-identified strains. The resistance against five pesticides (Prosper, Cuivox, Fungastop, Nimbecidine, and Maneb) revealed a maximum of inhibitory concentration about 10 mg l−1 of Prosper, 12 mg l−1 of Cuivox, 6 ml l−1 of Fungastop, 7.5 ml l−1of Nimbecidine, and 25 ml l−1 of Maneb. The analysis of the symbiotic properties and plant growth-promoting potential revealed two efficient strains significantly increased alfalfa dry weight through producing siderophores, phosphorus, and indole acetic acid (13.6 mg ml−1 and 19.9 mg ml−1 respectively). Hence, we identify two tolerant and efficient strains, Achromobacter spanium and Serratia plymuthica, isolated from Medicago sativa nodule with valuable potential able to phytostabilize pesticide-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbar S, Sultan S (2016) Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz J Microbiol 47(3):563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baize D, Sterckeman T (2001) The necessity of knowledge of the natural pedogeochemical background content in the evaluation of the contamination of soils by trace elements. Sci Total Environ 264:127–139

    Article  CAS  PubMed  Google Scholar 

  • Beringer JER (1974) Factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198

    CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin in snake beans. Biochem J 125:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Castanheira N, Dourado AC, Alves PI, Cortes-Pallero AM, Delgado-Rodriguez AI, Prazeres A, Borges N, Sanchez C, Barreto Crespo MT, Fareleira P (2014) Annual ryegrass-associated bacteria with potential for plant growth promotion. Microbiol Res 169:768–779

    Article  CAS  PubMed  Google Scholar 

  • Cébron A, Arsène-Ploetze F, Bauda P, Bertin PN, Billard P, Carapito C, Devin S, Goulhen-Chollet F, Poirel J, Leyval C (2014) Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. Microb Ecol 67(1):129–144

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hou F, Matthew C, He X (2017) Soil C, N, and P stocks evaluation under major land uses on China’s loess plateau. Rangel Ecol Manag 70(3):341–347. https://doi.org/10.1016/j.rama.2016.10.005

    Article  Google Scholar 

  • da Silva AM, Manfre LA, Urban RC, Silva VHO, Manzatto MP, Norton LD (2015) Organic farm does not improve neither soil, or water quality in rural watersheds from southeastern Brazil. Ecol Indic 48:132–146

    Article  CAS  Google Scholar 

  • Feng NX, Yu J, Zhao H, Cheng H, Mo CH, Cai QY, Li YW (2017) Science of the total environment efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. Sci Total Environ 583:352–368

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katznelson H, Bose B (1959) Metabolic activity and phosphate dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non- rhizosphere soil. Can J Microbiol 5:79–85

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Reddy MS (2013) Full paper phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize ( Zea Mays L .) J Gen Appl Microbio 59(4):295–303

    Article  CAS  Google Scholar 

  • Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90(4):1317–1332

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Kim DU, Kim NH, Ka JO (2014) Isolation and characterization of fenobucarb-degrading bacteria from rice paddy soils. Biodegradation 25(3):383–349

    Article  CAS  PubMed  Google Scholar 

  • Kukla M, Płocniczak T, Piotrowska-Seget Z (2014) Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere 117:40–46

    Article  CAS  PubMed  Google Scholar 

  • Laguerre G, van Berkum P, Amarger N, Prévost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis and Onobrychis. Appl Environ Microbiol 63:4748–4758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PWG, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS (2011) Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. Int Biodeterior Biodegrad 65:1119–1127

    Article  CAS  Google Scholar 

  • Liu X, Wu Y, Chen Y, Xu F, Halliday N, Gao K, Chan KG, Cámara M (2016) RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 167(3):168–177

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Sun J, Ding L, Luo Y, Chen M, Tang C (2013) Rhizobacteria (Pseudomonas sp. SB) assist phytoremediation of oily-sludge-contaminated soil by tall fescue (Testuca arundinacea L.). Plant Soil 371:533–542

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831–837

    Article  Google Scholar 

  • Madakka M, Jayaraju N, Rangaswamy V (2017) Changes in the metabolic activities of two agricultural soils as influenced by the pesticides and insecticides combination. Appl Soil Ecol 120:169–178

    Article  Google Scholar 

  • Manjanatha MG, Loynachan TE, Atherly AG (1992) Tn5 mutagenesis of Chinese Rhizobium fredii for siderophore overproduction. Soil Biol Biochem 24(2):151–155

    Article  CAS  Google Scholar 

  • Marinari SA, Lagomarsino MC, Di Tizio MA, Campiglia E (2010) Soil carbon and nitrogen mineralization kinetics in organic and conventional three-year cropping systems. Soil Tillage Res 109(2):161–168

    Article  Google Scholar 

  • Marinari S, Mancinelli R, Brunetti P, Campiglia E (2015) Soil quality, microbial functions and tomato yield under cover crop mulching in the Mediterranean environment. Soil Tillage Res 145:20–28

    Article  Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa ( Medicago sativa L .) a new promising plant probiotic Bacteria. Sci Rep 4:6389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr CH, Leifert C, Cummings SP, Cooper JM (2012) Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One 7(12):52891

    Article  CAS  Google Scholar 

  • Pacwa-p M, Tomasz P, Iwan J, Zarska M (2016) Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. J Environ Manag 168:175–184

    Article  CAS  Google Scholar 

  • Parada A, Valéria M, Rodrigues S, Elke J, Bran N, Elaine G (2016) Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Appl Soil Ecol 107:313–319

    Article  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Passari AK, Mishra VK, Leo VV, Vijai Kumar Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73

    Article  CAS  PubMed  Google Scholar 

  • Perez PG, Ye J, Wang S, Wang XL, Huang DF (2014) Analysis of the occurrence and activity of diazotrophic communities in organic and conventional horticultural soils. Appl Soil Ecol 79:37–48

    Article  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth- promoting rhizobacteria on nutrient acquisition process. A review Biol Fertil Soils 51(4):403–415

    Article  CAS  Google Scholar 

  • Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C (2016) Plant physiology and biochemistry characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley ( Hordeum vulgare L .) and tomato ( Solanum lycopersicon L .) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Bioanalytic Biochemestry 160(1):47–56

    CAS  Google Scholar 

  • Shafiani S, Malik A (2003) Tolerance of pesticides and antibiotic resistance in bacteria isolated from wastewater-irrigated soil. World J Microbiol Biotechnol 19:897–901

    Article  CAS  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs ) from soil. J Microbiol Biotechnol Res 1(2):90–95

    Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353

    Article  Google Scholar 

  • Song M, Yang Y, Jiang L, Hong Q, Zhang D, Shen Z (2017) Characterization of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium. Environ Pollut 220:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Umeh AC, Vázquez-cuevas GM, Semple KT (2017) Mineralisation of 14 C-phenanthrene in PAH-diesel contaminated soil: impact of Sorghum Bicolor and Medicago Sativa mono- or mixed culture. Appl Soil Ecol

  • Vincent JM (1970) A Manual for Practical Study of Root Nodule Bacteria. IBP Handbook. Blakwell Scientific Publications Oxford, p15

  • Winqvist C, Ahnström J, Bengtsson J (2012) Effects of organic farming on biodiversity and ecosystem services: taking landscape complexity into account. Ann N Y Acad Sci 1249:191–203

    Article  PubMed  Google Scholar 

  • Yan QX, Wang YX, Li SP, Li WJ, Hong Q (2010) Sphingobium qiguonii sp. nov., a carbaryl-degrading bacterium isolated from a wastewater treatment system. Int J Syst Evol Microbiol 60:2724–2728

    Article  CAS  PubMed  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S, Schoftner P, Yousaf S, Wang A, Hussain JS, Reichenauer TG (2017) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 43:374–377

    Google Scholar 

  • Zhang M, Bai SH, Li T, Zhang Y, Teng Y et al (2017) Linking potential nitrification rates , nitrogen cycling genes and soil properties after remediating the agricultural soil contaminated with heavy metal and fungicide. Chemosphere 184:892–899

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was performed within a convention between the Center of Biotechnology of Borj Cedria, the Technical Center of Organic Agriculture, and the Regional Center of Research in Horticulture and Organic Agriculture at Chott-Meriem (Sousse, Tunisia). The author thanks Dr. Yordan Muhovski, PhD (Walloon Agricultural Research Centre CRA-W Department of Life Sciences. Gembloux, Belgium), for English editing.

Funding

This study is supported by the laboratory project entitled “Tolerance of Legumes to Biotic and Abiotic Stresses” financed by the Center of Biotechnology of Borj Cedria.

This research work is carried out within the framework of a MOBIDOC thesis funded by the EU-PASRI program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moez Jebara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aroua, I., Abid, G., Souissi, F. et al. Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization. Int Microbiol 22, 111–120 (2019). https://doi.org/10.1007/s10123-018-0033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-0033-y

Keywords

Navigation