Skip to main content
Log in

Learning from yeasts: intracellular sensing of stress conditions

  • Review Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

One intriguing challenge in modern biology is to understand how cells respond to, and distinguish between different stressing stimuli. Evidence accumulated in recent years indicates that a network of signaling pathways extends from the plasma membrane to the very core of the cell nucleus to transduce environmental changes into a graded transcriptional response. Although many steps still remain unclear, studies on the stress-activated protein kinase (SAPK) pathways and related mechanisms provide insight into the biochemistry that regulates signal transmission and leads to outcomes such as cell adaptation and differentiation. This review focuses on selected topics of current interest related to the sensing of stress signals in cells of the fission yeast Schizosaccharomyces pombe. Because signaling pathways appear to be evolutionarily well conserved, yeasts may be useful models to learn how higher eukaryotes sense and respond to stresses at the cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Bilsland-Marchesan E, Ariño J, Saito H, Sunnerhagen P, Posas F (2000) Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20:3887–3895

    Article  CAS  PubMed  Google Scholar 

  2. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    CAS  PubMed  Google Scholar 

  3. Buck V, Quinn J, Soto P, Martin H, Saldanha J, Makino K, Morgan BA, Millar JBA (2001) Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol Biol Cell 12:407–419

    CAS  PubMed  Google Scholar 

  4. Cansado J, Soto T, Fernandez J, Vicente-Soler J, Gacto M (1998) Characterization of mutants devoid of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe: partial protection from heat shock and high-salt stress. J Bacteriol 180:1342–1345

    CAS  PubMed  Google Scholar 

  5. Carrillo D, Vicente-Soler J, Gacto M (1994) Cyclic AMP signalling pathway and trehalase activation in the fission yeast Schizosaccharomyces pombe. Microbiology 140:1467–1472

    CAS  PubMed  Google Scholar 

  6. Degols G, Russell P (1997) Discrete roles of the Spc1 kinase and the Atf1 transcription factor in the UV response of Schizosaccharomyces pombe. Mol Cell Biol 17:3356–3363

    CAS  PubMed  Google Scholar 

  7. Degols G, Shiozaki K, Russell P (1996) Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol Cell Biol 16:2870–2877

    CAS  PubMed  Google Scholar 

  8. Derijard B, Hibi M, Wu IH, Barret T, Su B, Deng T, Karin M, Davies, RJ (1994) JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    PubMed  Google Scholar 

  9. Fernandez J, Soto T, Franco A, Vicente-Soler J, Cansado J, Gacto M (1998) Enhancement of neutral trehalase activity by oxidative stress in the fission yeast Schizosaccharomyces pombe. Fungal Gen Biol 24:79–86

    Article  Google Scholar 

  10. Forsburg SL, Nurse P (1991) Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Ann Rev Cell Biol 7:227–256

    CAS  PubMed  Google Scholar 

  11. Freshney NW, Rawlison L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J (1994) Interleukin-1 activates a novel protein kinase casacade that results in the phosphorylation of hsp27. Cell 78:1039–1049

    CAS  PubMed  Google Scholar 

  12. Garcheva-Galgova Z, Derijard B, Wu IH, Davis RJ (1994) An osmosensing signal transduction pathway in mammalian cells. Science 265:806–808

    CAS  PubMed  Google Scholar 

  13. Gupta S, Campbell D, Derijard B, Davies RJ (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267:389–393

    CAS  PubMed  Google Scholar 

  14. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    CAS  PubMed  Google Scholar 

  15. Higuchi T, Watanabe Y, Yamamoto M (2002) Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol 22:1–11

    Article  CAS  PubMed  Google Scholar 

  16. Jin M, Fujita M, Culley BM, Apolinario E, Yamamoto M, Maundrell K, Hoffman CS (1995) sck1, a high copy number supressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140:457–467

    CAS  PubMed  Google Scholar 

  17. Kato T, Okazaki K, Murakami H, Stettler S, Fantes PA, Okayama H (1996) Stress signal, mediated by a Hog1-like MAP kinase, controls sexual development in fission yeast. FEBS Lett 378:207–212

    Article  CAS  PubMed  Google Scholar 

  18. Kim M, Lee W, Park J, Kim JB, Jang YK, Seong RH, Choe SY, Park SD (2000) The stress-activated MAP kinase Sty1/Spc1 and a 3´-regulatory element mediate UV-induced expression of the uvi15 gene at the post-transcriptional level. Nucleic Acids Res 28:3392–3402

    Article  CAS  PubMed  Google Scholar 

  19. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgwett JR (1994) The stress-activated protein kinase family of c-jun kinases. Nature 369:156–160

    CAS  PubMed  Google Scholar 

  20. Livingstone C, Patel G, Jones N (1995) ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 14:1785–1797

    CAS  PubMed  Google Scholar 

  21. Maeda T, Takekawa M, Saito H (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558

    CAS  PubMed  Google Scholar 

  22. Maeda T, Watanabe Y, Kunitomo H, Yamamoto M (1994) Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J Biol Chem 269:9632–9637

    CAS  PubMed  Google Scholar 

  23. Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    CAS  PubMed  Google Scholar 

  24. Marshall CJ (1995) Specificity of receptor tyrosine signaling: transient versus sustained extracellular signal regulated kinase activation. Cell 80:179–185

    CAS  PubMed  Google Scholar 

  25. Millar JBA, Buck V, Wilkinson MG (1995) Pyp1 and Pyp2 PTPases dephosphorylate an osmosensing MAP kinase controlling cell size at division in fission yeast. Genes Dev 12:1453–1463

    Google Scholar 

  26. Nakagawa CW, Yamada K, Mutoh N (2000) Role of Atf1 and Pap1 in the induction of the catalase gene of fission yeast Schizosaccharomyces pombe. J Biochem 127:233–238

    CAS  PubMed  Google Scholar 

  27. Nguyen AN, Shiozaki K (1999) Heat shock-induced activation of stress MAP kinase is regulated by threonine- and tyrosine-specific phosphatases. Genes Dev 13:1353–1363

    Google Scholar 

  28. Nguyen AN, Lee A, Place W, Shiozaki K (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11:1169–1181

    CAS  PubMed  Google Scholar 

  29. Park JL, Grant CM, Davies MJ, Dawes IW (1998) The cytoplasmic Cu,Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing. J Biol Chem 273:22921–22928

    Article  CAS  PubMed  Google Scholar 

  30. Phatdare S, Alsina J, Inoue M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180

    CAS  PubMed  Google Scholar 

  31. Posas F, Takekawa M, Saito H (1998) Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1:175–182

    Article  CAS  PubMed  Google Scholar 

  32. Quinn J, Findlay VJ, Dawson K, Millar JBA, Jones N, Morgan BA, Toone WM (2002) Distinct regularory proteins control the graded transcriptional response to increasing H2O2 levels in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 13:805–816

    Article  CAS  PubMed  Google Scholar 

  33. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda A (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037

    CAS  PubMed  Google Scholar 

  34. Russell P, Nurse P (1986) Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeast divided. Cell 45:781–782

    CAS  PubMed  Google Scholar 

  35. Sabbagh W, Flatauer LJ, Bardwell AJ, Bardwell L (2001) Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation. Mol Cell 8:683–691

    CAS  PubMed  Google Scholar 

  36. Shieh JC, Wilkinson MG, Buck V, Morgan B, Makino K, Millar JBA (1997) The Mcs4 regulator co-ordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 11:1008–1022

    CAS  PubMed  Google Scholar 

  37. Shieh JC, Wilkinson MG, Millar JBA (1998) The Win1 mitotic regulator is a component of the fission yeast stress-activated Sty1 MAPK pathway. Mol Biol Cell 9:311–322

    CAS  PubMed  Google Scholar 

  38. Shiozaki K, Russell P (1995) Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature 378:739–743

    CAS  PubMed  Google Scholar 

  39. Shiozaki K, Shiozaki M, Russel P (1998) Heat stress activates fission yeast Spc1/Sty1 MAPK by a MEKK-independent mechanism. Mol Biol Cell 9:1339–1349

    CAS  PubMed  Google Scholar 

  40. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    CAS  PubMed  Google Scholar 

  41. Sipiczki M (1995) Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie van Leeuwenhoek 68:119–149

    CAS  PubMed  Google Scholar 

  42. Smith DA, Toone WM, Murchie DC, Bahler J, Jones N, Morgan BA, Quinn J (2002) The Srk1 protein kinase is a target for the Sty1 stress-activated MAPK in fission yeast. J Biol Chem 277:33411–33421

    Article  CAS  PubMed  Google Scholar 

  43. Soto T, Fernandez J, Cansado J, Vicente-Soler J, Gacto M (1995) Glucose-induced, cyclic-AMP-independent signalling pathway for activation of neutral trehalase in the fission yeast Schizosaccharomyces pombe. Microbiology 141:2665–2671

    CAS  Google Scholar 

  44. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1995) Activation of neutral trehalase by glucose and nitrogen source in Schizosaccharomyces pombe strains deficient in cAMP-dependent protein kinase activity. FEBS Lett 367:263–266

    Article  CAS  PubMed  Google Scholar 

  45. Soto T, Fernandez J, Dominguez A, Vicente-Soler J, Cansado J, Gacto M (1998) Analysis of the ntp1 gene, encoding neutral trehalase in the fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 1443:225–229

    Article  CAS  PubMed  Google Scholar 

  46. Soto T, Fernandez J, Vicente-Soler J, Cansado J, Gacto M (1999) Accumulation of trehalose by overexpression of tps1, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. Appl Environ Microbiol 65:2020–2024

    CAS  PubMed  Google Scholar 

  47. Soto T, Beltran FF, Paredes V, Madrid M, Millar JBA, Vicente-Soler J, Cansado J, Gacto M (2002) Cold induces stress-activated protein kinase-mediated response in the fission yeast Schizosaccharomyces pombe. Eur J Biochem 269:1–10

    Article  Google Scholar 

  48. Storz G, Tartaglia LA, Ames BN (1990) Transcriptional regulator of oxidative stress-inducible genes: Direct activation by oxidation. Science 248:189–194

    Google Scholar 

  49. Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G (2001) Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA 98:5625–5630

    Article  CAS  PubMed  Google Scholar 

  50. Thevelein JM (1992) The RAS-adenylate cyclase pathway and cell cycle life control in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 62:109–130

    CAS  PubMed  Google Scholar 

  51. Toone WM, Kuge S, Samuels M, Morgan BA, Toda T, Jones N (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev 12:1453–1463

    CAS  PubMed  Google Scholar 

  52. Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210

    Google Scholar 

  53. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought and salt stress. Plant Cell 14 (Suppl.):S165–S183

    Google Scholar 

Download references

Acknowledgements

Several research projects reported in this review were supported by the Dirección General de Investigación Científica y Técnica, Spain (projects PB94-1151, PB97-1049, BMC2001-0135, and BMC2002-01104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Gacto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gacto, M., Soto, T., Vicente-Soler, J. et al. Learning from yeasts: intracellular sensing of stress conditions. Int Microbiol 6, 211–219 (2003). https://doi.org/10.1007/s10123-003-0136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-003-0136-x

Keywords

Navigation