Skip to main content

Advertisement

Log in

The Role of Renewable Protocatechol Acid in Epoxy Coating Modification: Significantly Improved Antibacterial and Adhesive Properties

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

It is of great significance to design epoxy coatings with superior antibacterial properties and high adhesive properties, as well as excellent processing, superior durability, and high transparency. However, it is still a challenge because of the common complex design and synthesis. Herein, the bio-based monomer protocatechuic acid (PCA) was used as raw material, the catechol structure with high bonding and antibacterial properties was introduced into the flexible alkane segment of ethylene glycol diglycidyl ether (EGDE) through an efficient, and green method, and it was cured with isophorone diamine (IPDA) to prepare corresponding thermosets. The cured resins exhibited excellent all-around qualities, particularly in bonding and antibacterial. When 30% PCA was added to pure epoxy resin, the adhesion between substrate and coating increased from 4.40 MPa to 13.60 MPa and the antibacterial rate of coating against E. coli and S. aureus could approach 100%. All of this is due to the fact that the catechol structure present in PCA has the ability to interact with various substrates and alter the permeability of bacterial cell membranes. The architecture of this method offers a fresh approach to dealing with the issues of challenging raw material selection and complex synthesis techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dai, J.; Peng, Y.; Teng, N.; Liu, Y.; Liu, C.; Shen, X.; Mahmud, S.; Zhu, J.; Liu, X. High-performing and fire-resistant biobased epoxy resin from renewable sources. ACS Sustainable Chem. Eng. 2018, 6, 7589–7599.

    Article  CAS  Google Scholar 

  2. Shundo, A.; Yamamoto, S.; Tanaka, K. Network formation and physical properties of epoxy resins for future practical applications. JACS Au 2022, 2, 1522–1542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen, P.; Wang, G.; Li, J.; Zhang, M.; Qiao, X. Preparation of textured epoxy resin coatings for excellent hydrophobicity and corrosion resistance. Prog. Org. Coat. 2023, 175.

  4. Wang, H.; Wang, M.; Xu, X.; Gao, P.; Xu, Z.; Zhang, Q.; Li, H.; Yan, A.; Kao, R. Y.; Sun, H. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 2021, 12, 3331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wang, Y.; Wang, Y.; Li, X.; Li, J.; Su, L.; Zhang, X.; Du, X. Dendritic silica particles with well-dispersed ag nanoparticles for robust antireflective and antibacterial nanocoatings on polymeric glass. ACS Sustainable Chem. Eng. 2018, 6, 14071–14081.

    Article  CAS  Google Scholar 

  6. Xia, L.; Wang, X.; Liu, H.; Luo, Q.; Guo, C.; Miao, Z.; Dai, J.; Li, D.; Xu, Y.; Yuan, C.; Zeng, B.; Dai, L. Cu2O based on core-shell nanostructure for enhancing the fire-resistance, antibacterial properties and mechanical properties of epoxy resin. Compos. Commun. 2023, 37, 101445.

    Article  Google Scholar 

  7. Guerrero Correa, M.; Martinez, F. B.; Vidal, C. P.; Streitt, C.; Escrig, J.; de Dicastillo, C. L. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J. Nanotechnol. 2020, 11, 1450–1469.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang, X.; Yu, Q.; Gao, W.; Tang, X.; Yi, H.; Tang, X. The mechanism of metal-based antibacterial materials and the progress of food packaging applications: a review. Ceram. Int. 2022, 48, 34148–34168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Marín-Caba, L.; Bodelón, G.; Negrín-Montecelo, Y.; Correa-Duarte, M. A. Sunlight-sensitive plasmonic nanostructured composites as photocatalytic coating with antibacterial properties. Adv. Funct. Mater. 2021, 31.

  10. Bhattacharyya, S.; Ali, S. R.; Venkateswarulu, M.; Howlader, P.; Zangrando, E.; De, M.; Mukherjee, P. S. Self-assembled Pd(12) coordination cage as photoregulated oxidase-like nanozyme. J. Am. Chem. Soc. 2020, 142, 18981–18989.

    Article  PubMed  CAS  Google Scholar 

  11. Li, P.; Li, J.; Feng, X.; Li, J.; Hao, Y.; Zhang, J.; Wang, H.; Yin, A.; Zhou, J.; Ma, X.; Wang, B. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Xu, X.; Wang, Y.; Zhang, D. A novel strategy of hydrothermal in situ grown bismuth based film on epoxy resin as recyclable photocatalyst for photodegrading antibiotics and sterilizing microorganism. Sep. Purif. Technol. 2022, 290, 120842.

    Article  CAS  Google Scholar 

  13. Li, R.; Yang, G.; Wang, Y.; Liu, L.; Wang, Q.; Wang, G.; Ouyang, X. Synthesis of antibacterial polyether biguanide curing agent and its cured antibacterial epoxy resin. Des. Monomers Polym. 2021, 24, 63–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen, Q.; Zhang, L.; Zhang, J.; Habib, S.; Lu, G.; Dai, J.; Liu, X. Bio-based polybenzoxazines coatings for efficient marine antifouling. Prog. Org. Coat. 2023, 174, 107298.

    Article  CAS  Google Scholar 

  15. Hao, L.; Jiang, R.; Fan, Y.; Xu, J.-n.; Tian, L.; Zhao, J.; Ming, W.; Ren, L. Formation and antibacterial performance of metal-organic framework films via dopamine-mediated fast assembly under visible light. ACS Sustainable Chem. Eng. 2020, 8, 15834–15842.

    Article  CAS  Google Scholar 

  16. Ou, X.; Xue, Bin.; Yanee, W.; Tian, R.; Zou, A.; Yang, L.; Wang, W.; Cao, Y.; Li, J. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 2020, 6, eabb7620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hemmatpour, H.; De Luca, O.; Crestani, D.; Stuart, M. C. A.; Lasorsa, A.; van der Wel, P. C. A.; Loos, K.; Giousis, T.; Haddadi-Asl, V.; Rudolf, P. New insights in polydopamine formation via surface adsorption. Nat. Commun. 2023, 14, 664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Saiz-Poseu, J.; Mancebo-Aracil, J.; Nador, F.; Busque, F.; Ruiz-Molina, D. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. Engl. 2019, 58, 696–714.

    Article  PubMed  CAS  Google Scholar 

  19. Fang, Z.; Nikafshar, S.; Hegg, E. L.; Nejad, M. Biobased divanillin as a precursor for formulating biobased epoxy resin. ACS Sustainable Chem. Eng. 2020, 8, 9095–9103.

    Article  CAS  Google Scholar 

  20. Alsuwait, R. B.; Souiyah, M.; Momohjimoh, I.; Ganiyu, S. A.; Bakare, A. O. Recent development in the processing, properties, and applications of epoxy-based natural fiber polymer biocomposites. Polymers 2022, 15, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fang, X.; Guo, X.; Tang, W.; Gu, Q.; Wu, Y.; Sun, H.; Gao, J. Efficient toughening of DGEBA with a bio-based protocatechuic acid derivative. ACS Omega 2023, 8, 9962–9968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Miklasinska-Majdanik, M.; Kepa, M.; Kulczak, M.; Ochwat, M.; Wasik, T. J. The array of antibacterial action of protocatechuic acid ethyl ester and erythromycin on staphylococcal strains. Antibiotics 2022, 11, 848.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shi, J.; Zhang, F.; Wu, S.; Guo, Z.; Huang, X.; Hu, X.; Holmes, M.; Zou, X. Noise-free microbial colony counting method based on hyperspectral features of agar plates. Food Chem. 2019, 274, 925–932.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, W.; Yan, M.; Zhao, W. Antibacterial-renew dual-function anti-biofouling strategy: self-assembled Schiff-base metal complex coatings built from natural products. J. Colloid Interface Sci. 2023, 629 (Pt A), 496–507.

    Article  PubMed  CAS  Google Scholar 

  25. Paschalidou, K.; Salta, K.; Koulougliotis, D. Exploring the connections between systems thinking and green chemistry in the context of chemistry education: a scoping review. Sustain. Chem. Pharm. 2022, 29, 100788.

    Article  CAS  Google Scholar 

  26. Liu, J.; Dai, J.; Wang, S.; Peng, Y.; Cao, L.; Liu, X. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin. Compos. Part B: Eng. 2020, 190, 107926.

    Article  CAS  Google Scholar 

  27. Dell’Anno, G.; Partridge, I.; Cartié, D.; Hamlyn, A.; Chehura, E.; James, S.; Tatam, R. Automated manufacture of 3D reinforced aerospace composite structures. Int. J. of Struct. Integr. 2012, 3, 22–40.

    Article  Google Scholar 

  28. Zhao, S.; Abu-Omar, M. M. Biobased epoxy nanocomposites derived from lignin-based monomers. Biomacromolecules 2015, 16, 2025–2031.

    Article  PubMed  CAS  Google Scholar 

  29. Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 2017, 358, 502–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wei, H.; Xia, J.; Zhou, W.; Zhou, L.; Hussain, G.; Li, Q.; Ostrikov, K. Adhesion and cohesion of epoxy-based industrial composite coatings. Compos. Part B: Eng. 2020, 193, 108035.

    Article  CAS  Google Scholar 

  31. Xie, Y.; Qian, Y.; Li, Z.; Liang, Z.; Liu, W.; Yang, D.; Qiu, X. Near-infrared-activated efficient bacteria-killing by lignin-based copper sulfide nanocomposites with an enhanced photothermal effect and peroxidase-like activity. ACS Sustainable Chem. Eng. 2021, 9, 6479–6488.

    Article  CAS  Google Scholar 

  32. Giannakas, A.; Vlacha, M.; Salmas, C.; Leontiou, A.; Katapodis, P.; Stamatis, H.; Barkoula, N. M.; Ladavos, A. Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr. Polym. 2016, 140, 408–15.

    Article  PubMed  CAS  Google Scholar 

  33. Kim, Y. S.; Kim, K. S.; Han, I.; Kim, M. H.; Jung, M. H.; Park, H. K. Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs. PLoS One 2012, 7, e38242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kang, B.; Lan, D.; Yao, C.; Liu, P.; Chen, X.; Qi, S. Evaluation of antibacterial property and biocompatibility of Cu doped TiO2 coated implant prepared by micro-arc oxidation. Front. Bioeng. Biotech. 2022, 10, 941109.

    Article  Google Scholar 

  35. Demir, C.; Ceren Süer, N.; Yapaöz, M. A.; Kébir, N.; Okullu, S. Ö.; Kocagöz, T.; Eren, T. Biocidal activity of ROMP-polymer coatings containing quaternary phosphonium groups. Prog. Org. Coat. 2019, 135, 299–305.

    Article  CAS  Google Scholar 

  36. Polinarski, M. A.; Beal, A. L. B.; Silva, F. E. B.; Bernardi-Wenzel, J.; Burin, G. R. M.; Muniz, G. I. B.; Alves, H. J. New perspectives of using chitosan, silver, and chitosan-silver nanoparticles against multidrug-resistant bacteria. Part. Part. Syst. Char. 2021, 38, 2100009.

    Article  CAS  Google Scholar 

  37. Deng, Y.; Xia, L.; Song, G.-L.; Zhao, Y.; Zhang, Y.; Xu, Y.; Zheng, D. Development of a curcumin-based antifouling and anticorrosion sustainable polybenzoxazine resin composite coating. Compos. Part B: Eng. 2021, 225, 109263.

    Article  CAS  Google Scholar 

  38. Torrisi, C.; Malfa, G. A.; Acquaviva, R.; Castelli, F.; Sarpietro, M. G. Effect of protocatechuic acid ethyl ester on biomembrane models: multilamellar vesicles and monolayers. Membranes 2022, 12, 283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cheng, H.; Wang, F.; Ou, J.; Li, W.; Xue, R. Solar reflective coatings with luminescence and self-cleaning function. Surf. Interfaces 2021, 26, 101325.

    Article  CAS  Google Scholar 

  40. Guo, H.; Liu, M.; Xie, C.; Zhu, Y.; Sui, X.; Wen, C.; Li, Q.; Zhao, W.; Yang, J.; Zhang, L. A sunlight-responsive and robust anti-icing/deicing coating based on the amphiphilic materials. Chem. Eng. J. 2020, 40, 126161.

    Article  Google Scholar 

  41. Wang, Z.; Liu, B.; Zeng, F.; Lin, X.; Zhang, J.; Wang, X.; Wang, Y.; Zhao, H. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance. Sci. Adv. 2022, 8, eadd8527.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhang, J.; Long, C.; Zhang, X.; Liu, Z.; Zhang, X.; Liu, T.; Li, J.; Gao, Q. An easy-coating, versatile, and strong soy flour adhesive via a biomineralized structure combined with a biomimetic brush-like polymer. Chem. Eng. J. 2022, 450, 138387.

    Article  CAS  Google Scholar 

  43. Chen, J.; He, Z.; Liu, J.; Wang, Y.; Hodgson, M.; Gao, W. Antibacterial anodic aluminium oxide-copper coatings on aluminium alloys: preparation and long-term antibacterial performance. Chem. Eng. J. 2023, 461, 141873.

    Article  CAS  Google Scholar 

  44. Cao, Y.; Yang, Z.; Ou, J.; Jiang, L.; Chu, G.; Wang, Y.; Chen, S. Ultratransparent, hard and antibacterial coating with pendent quaternary pyridine salt. Prog. Org. Coat. 2023, 175, 107369.

    Article  CAS  Google Scholar 

  45. Nguyen, Q. X.; Nguyen, T. T.; Pham, N. M.; Khong, T. T.; Cao, T. M.; Pham, V. V. A fabrication of CNTs/TiO2/polyurethane films toward antibacterial and protective coatings. Prog. Org. Coat. 2022, 167, 106838.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U1909220 and 52003283), Science and Technology Innovation 2025 Major Project of Ningbo (Nos. 2021Z092, 2022Z111 and 2022Z160), Defense Industrial Technology Development Program (No. JCKY2021513B001) and the Research Project of Technology Application for Public Welfare of Ningbo City (No. 202002N3122).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Yue Dai, Xin-Wu Ba or Xiao-Qing Liu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3029_MOESM1_ESM.pdf

The Role of Renewable Protocatechol Acid in Epoxy Coating Modification: Significantly Improved Antibacterial and Adhesive Properties

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MX., Dai, JY., Zhang, LY. et al. The Role of Renewable Protocatechol Acid in Epoxy Coating Modification: Significantly Improved Antibacterial and Adhesive Properties. Chin J Polym Sci 42, 63–72 (2024). https://doi.org/10.1007/s10118-023-3029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3029-9

Keywords

Navigation