Skip to main content

Advertisement

Log in

Synthesis of Bio-based Epoxy Containing Phosphine Oxide as a Reactive Additive Toward Highly Toughened and Fire-retarded Epoxy Resins

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The integration of high mechanical toughness, impact strength as well as excellent flame-retardant properties toward epoxy resins (EPs) have always been a dilemma. The inadequate overall performance of EPs severely restricts their sustainable utilization in engineering aspects over long-term. Herein, a new bio-based agent (diglycidyl ether of magnolol phosphine oxide, referred as DGEMP) derived from magnolol (classified as lignan), extracted from natural plants Magnolia officinalis, was successfully synthesized and further employed as a flame-retardant reactive additive to diglycidyl ether of bisphenol A (DGEBA). As demonstration, the composite resin, DGEBA/15DGEMP (15 wt% DGEMP), achieved an Underwriters Laboratories-94 V-0 rating with a high limiting oxygen index (LOI) value (41.5%). In cone calorimeter tests, it showed that heat release and smoke production were effectively inhibited during combustion, wherein the peak heat release rate (PHRR) value of DGEBA/15DGEMP was reduced by 50% compared to neat DGEBA. Additionally, it exhibited a superior tensile strength (82.8 MPa), toughness (5.11 MJ/m3) and impact strength (36.5 kJ/m2), much higher than that of neat DGEBA (49.7 MPa, 2.05 MJ/m3 and 20.9 kJ/m2). Thus, it is highly anticipated that DGEMP imparts significantly improved mechanical and fire-retarded properties to conventional EPs, which holds a great potential to address the pressing challenges in EP thermosets industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, F. L.; Li, X.; Park, S. J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11.

    Article  CAS  Google Scholar 

  2. May, C. Epoxy resins: chemistry and technology. Routledge: 2018.

  3. Gao, T. Y.; Wang, F. D.; Xu, Y.; Wei, C. X.; Zhu, S. E.; Yang, W.; Lu, H. D. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem. Eng. J. 2022, 428, 131173.

    Article  CAS  Google Scholar 

  4. Kong, Q.; Zhu, H.; Huang, S.; Wu, T.; Zhu, F.; Zhang, Y.; Wang, Y.; Zhang, J. Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim. Acta 2022, 707, 179112.

    Article  CAS  Google Scholar 

  5. Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased thermosetting epoxy: present and future. Chem. Rev. 2014, 114, 1082–1115.

    Article  CAS  PubMed  Google Scholar 

  6. Mi, X.; Liang, N.; Xu, H.; Wu, J.; Jiang, Y.; Nie, B.; Zhang, D. Toughness and its mechanisms in epoxy resins. Prog. Mater. Sci. 2022, 130, 100977.

    Article  CAS  Google Scholar 

  7. Ye, G.; Huo, S.; Wang, C.; Shi, Q.; Yu, L.; Liu, Z.; Fang, Z.; Wang, H. A novel hyperbranched phosphorus-boron polymer for transparent, flame-retardant, smoke-suppressive, robust yet tough epoxy resins. Compos. Part B: Eng. 2021, 227, 109395.

    Article  CAS  Google Scholar 

  8. Wang, X.; Zhou, S.; Guo, W. W.; Wang, P. L.; Xing, W.; Song, L.; Hu, Y. Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins. ACS Sustain. Chem. Eng. 2017, 5, 3409–3416.

    Article  CAS  Google Scholar 

  9. Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V. S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366.

    Article  CAS  Google Scholar 

  10. Mendis, G. P.; Weiss, S. G.; Korey, M.; Boardman, C. R.; Dietenberger, M.; Youngblood, J. P.; Howarter, J. A. Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites. Green Mater. 2016, 4, 150–159.

    Article  Google Scholar 

  11. Velencoso, M. M.; Battig, A.; Markwart, J. C.; Schartel, B.; Wurm, F. R. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Ed. 2018, 57, 10450–10467.

    Article  CAS  Google Scholar 

  12. Huo, S.; Zhou, Z.; Jiang, J.; Sai, T.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide. Chem. Eng. J. 2022, 427, 131578.

    Article  CAS  Google Scholar 

  13. Xue, T.; Fan, W.; Zhang, X.; Zhao, X.; Yang, F.; Liu, T. Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Compos. Part B: Eng. 2021, 219, 108963.

    Article  CAS  Google Scholar 

  14. Chu, F.; Qiu, S.; Zhou, Y.; Zhou, X.; Cai, W.; Zhu, Y.; He, L.; Song, L.; Hu, W. Novel glycerol-based polymerized flame retardants with combined phosphorus structures for preparation of high performance unsaturated polyester resin composites. Compos. Part B: Eng. 2022, 233, 109647.

    Article  CAS  Google Scholar 

  15. Liu, M.; Peng, B.; Su, G.; Fang, M. Reactive flame retardants: are they safer replacements. Environ. Sci. Technol. 2021, 55, 14477–14479.

    Article  CAS  PubMed  Google Scholar 

  16. Guo, W.; Liang, F.; Chen, S.; Yu, K.; Sun, J.; Pang, Z.; Fei, B. Magnolol-derived thiol-ene photo-polymerized membranes with intrinsic anti-flammability and high transparency. Compos. Part B: Eng. 2022, 242, 110074.

    Article  CAS  Google Scholar 

  17. Teng, N.; Yang, S.; Dai, J.; Wang, S.; Zhao, J.; Zhu, J.; Liu, X. Making benzoxazine greener and stronger: renewable resource, microwave irradiation, green solvent, and excellent thermal properties. ACS Sustain. Chem. Eng. 2019, 7, 8715–8723.

    Article  CAS  Google Scholar 

  18. Qi, Y.; Weng, Z.; Zhang, K.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy. Chem. Eng. J. 2020, 387, 124115.

    Article  CAS  Google Scholar 

  19. Cao, Q.; Weng, Z.; Qi, Y.; Li, J.; Liu, W.; Liu, C.; Zhang, S.; Wei, Z.; Chen, Y.; Jian, X. Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin. Chin. Chem. Lett. 2022, 33, 2195–2199.

    Article  CAS  Google Scholar 

  20. Yang, H.; Song, L.; Tai, Q.; Wang, X.; Yu, B.; Yuan, Y.; Hu, Y.; Yuen, R. K. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. degrad. stab. 2014, 105, 248–256.

    Article  CAS  Google Scholar 

  21. Braun, U.; Balabanovich, A. I.; Schartel, B.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J. K.; Altstädt, V. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 2006, 47, 8495–8508.

    Article  CAS  Google Scholar 

  22. Luo, Q.; Liu, M.; Xu, Y.; Ionescu, M.; Petrović, Z. S. Thermosetting allyl resins derived from soybean oil. Macromolecules 2011, 44, 7149–7157.

    Article  CAS  Google Scholar 

  23. Jian, R. K.; Ai, Y. F.; Xia, L.; Zhang, Z. P.; Wang, D. Y. Organophosphorus heteroaromatic compound towards mechanically reinforced and low-flammability epoxy resin. Compos. Part B: Eng. 2019, 168, 458–466.

    Article  CAS  Google Scholar 

  24. Ma, C.; Li, J. Synthesis of an organophosphorus flame retardant derived from daidzein and its application in epoxy resin. Compos. Part B: Eng. 2019, 178, 107471.

    Article  CAS  Google Scholar 

  25. Yu, M.; Zhang, T.; Li, J.; Tan, J.; Zhang, M.; Zhou, Y.; Zhu, X. Facile synthesis of eugenol-based phosphorus/silicon-containing flame retardant and its performance on fire retardancy of epoxy resin. ACS Appl. Polym. Mater. 2022, 4, 1794–1804.

    Article  CAS  Google Scholar 

  26. Qi, Y.; Weng, Z.; Kou, Y.; Li, J.; Cao, Q.; Wang, J.; Zhang, S.; Jian, X. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Compos. Part B: Eng. 2021, 214, 108749.

    Article  CAS  Google Scholar 

  27. Dai, J.; Teng, N.; Liu, J.; Feng, J.; Zhu, J.; Liu, X. Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements. Compos. Part B: Eng. 2019, 179, 107523.

    Article  CAS  Google Scholar 

  28. Liu, X. F.; Xiao, Y. F.; Luo, X.; Liu, B. W.; Guo, D. M.; Chen, L.; Wang, Y. Z. Flame-retardant multifunctional epoxy resin with high performances. Chem. Eng. J. 2022, 427, 132031.

    Article  CAS  Google Scholar 

  29. Liu, J.; Dai, J.; Wang, S.; Peng, Y.; Cao, L.; Liu, X. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin. Compos. Part B: Eng. 2020, 190, 107926.

    Article  CAS  Google Scholar 

  30. Xu, Y.; Yang, W. J.; Zhou, Q. K.; Gao, T. Y.; Xu, G. M.; Tai, Q. L.; Zhu, S. E.; Lu, H. D.; Yuen, R. K. K.; Yang, W.; Wei, C. X. Highly thermostable resveratrol-based flame retardant for enhancing mechanical and fire safety properties of epoxy resins. Chem. Eng. J. 2022, 450, 138475.

    Article  CAS  Google Scholar 

  31. Zhao, D.; Wang, J.; Wang, X. L.; Wang, Y. Z. Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures. Chem. Eng. J. 2018, 344, 419–430.

    Article  CAS  Google Scholar 

  32. Wei, C.; Esposito, D.; Tauer, K. Thermal properties of thermoplastic polymers: influence of polymer structure and procedure of radical polymerization. Polym. Degrad. Stabil. 2016, 131, 157–168.

    Article  CAS  Google Scholar 

  33. Ma, X.; Guo, W.; Xu, Z.; Chen, S.; Cheng, J.; Zhang, J.; Miao, M.; Zhang, D. Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance. Compos. Part B: Eng. 2020, 192, 108005.

    Article  CAS  Google Scholar 

  34. Huo, S.; Sai, T.; Ran, S.; Guo, Z.; Fang, Z.; Song, P.; Wang, H. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Compos. Part B: Eng. 2022, 234, 109701.

    Article  CAS  Google Scholar 

  35. Fei, X.; Wei, W.; Tang, Y.; Zhu, Y.; Luo, J.; Chen, M.; Liu, X. Simultaneous enhancements in toughness, tensile strength, and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester. Eur. Polym. J. 2017, 90, 431–441.

    Article  CAS  Google Scholar 

  36. Hu, G.; Zhang, X.; Bu, M.; Lei, C. Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant. Eur. Polym. J. 2022, 178, 111488.

    Article  CAS  Google Scholar 

  37. Luo, Q.; Sun, Y.; Yu, B.; Li, C.; Song, J.; Tan, D.; Zhao, J. Synthesis of a novel reactive type flame retardant composed of phenophosphazine ring and maleimide for epoxy resin. Polym. Degrad. Stabil. 2019, 165, 137–144.

    Article  CAS  Google Scholar 

  38. Jian, R. K.; Ai, Y. F.; Xia, L.; Zhao, L. J.; Zhao, H. B. Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins. J. Hazard. Mater. 2019, 371, 529–539.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, Y.; Liu, B.; Sun, Z.; Zhang, H.; Men, Y.; Hu, W.; Shao, Z. Bioinspired mono-component lignin endowing epoxy resin with simultaneously improving flame retardancy and mechanical properties. Compos. Commun. 2022, 35, 101306.

    Article  Google Scholar 

  40. Li, S.; Zhao, X.; Liu, X.; Yang, X.; Yu, R.; Zhang, Y.; Huang, W.; Deng, K. Cage—ladder-structure, phosphorus-containing polyhedral oligomeric silsesquinoxanes as promising reactive-type flame retardants for epoxy resin. J. Appl. Polym. Sci. 2019, 136, 47607.

    Article  Google Scholar 

  41. Ma, C.; Qian, L.; Li, J. Effect of functional groups of magnolol-based cyclic phosphonate on structure and properties of flame retardant epoxy resin. Polym. Degrad. Stabil. 2021, 190, 109630.

    Article  CAS  Google Scholar 

  42. Wang, P.; Yang, F.; Li, L.; Cai, Z. Flame retardancy and mechanical properties of epoxy thermosets modified with a novel DOPO-based oligomer. Polym. Degrad. Stabil. 2016, 129, 156–167.

    Article  CAS  Google Scholar 

  43. Yan, H.; Li, N.; Fang, Z.; Wang, H. Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flame retardant ramie fabrics. J. Appl. Polym. Sci. 2017, 134, 44795.

    Article  Google Scholar 

  44. Li, Y. C.; Mannen, S.; Morgan, A. B.; Chang, S.; Yang, Y. H.; Condon, B.; Grunlan, J. C. Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric. Adv. Mater. 2011, 23, 3926–3931.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, G.; Xiao, Y.; Qian, Z.; Yang, Y.; Jia, P.; Song, L.; Hu, Y.; Ma, C.; Gui, Z. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites. Chem. Eng. J. 2023, 451, 137823.

    Article  CAS  Google Scholar 

  46. Pol, V. G.; Motiei, M.; Gedanken, A.; Calderon-Moreno, J.; Yoshimura, M. Carbon spherules: synthesis, properties and mechanistic elucidation. Carbon 2004, 42, 111–116.

    Article  CAS  Google Scholar 

  47. Wu, J. N.; Chen, L.; Fu, T.; Zhao, H. B.; Guo, D. M.; Wang, X. L.; Wang, Y. Z. New application for aromatic Schiff base: high efficient flame-retardant and anti-dripping action for polyesters. Chem. Eng. J. 2018, 336, 622–632.

    Article  CAS  Google Scholar 

  48. Chen, H. R.; Meng, W. M.; Wang, R. Y.; Chen, F. L.; Li, T.; Wang, D. D.; Wang, F.; Zhu, S. E.; Wei, C. X.; Lu, H. D.; Yang, W. Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonization of Ti3C2Tx-MXene wrapped polystyrene spheres. Carbon 2022, 190, 319–328.

    Article  CAS  Google Scholar 

  49. Wang, X.; Xing, W.; Feng, X.; Yu, B.; Song, L.; Hu, Y. Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polym. Chem. 2014, 5, 1145–1154.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Anhui Provincial Natural Science Foundation for Distinguished Young Scholar (No. 2008085J26), Natural Science Foundation in University of Anhui Province (Nos. KJ2021ZD0119 and 2022AH040251), China Scholarship Council (No. 202008340021), Start-up Fund for Distinguished Scholars in Hefei University (No. 20RC37), Anhui Provincial Natural Science Foundation (No. 2108085QB47) and Research Grants Council of the Hong Kong Special Administrative Region (No. CityU 11208617).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yang or Hongdian Lu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_2932_MOESM1_ESM.pdf

Synthesis of Bio-based Epoxy Containing Phosphine Oxide as a Reactive Additive Toward Highly Toughened and Fire-retarded Epoxy Resins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C., Gao, T., Xu, Y. et al. Synthesis of Bio-based Epoxy Containing Phosphine Oxide as a Reactive Additive Toward Highly Toughened and Fire-retarded Epoxy Resins. Chin J Polym Sci 41, 1733–1746 (2023). https://doi.org/10.1007/s10118-023-2932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2932-4

Keywords

Navigation