Skip to main content

Advertisement

Log in

A Robust Self-healing Polyurethane Elastomer Enabled by Tuning the Molecular Mobility and Phase Morphology through Disulfide Bonds

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Elastomers with outstanding strength, toughness and healing efficiency are highly promising for many emerging fields. However, it is still a challenge to integrate all these beneficial features in one elastomer. Herein, an asymmetric alicyclic structure adjacent to aromatic disulfide was tactfully introduced into the backbone of polyurethane (PU) elastomer. Specifically, such elastomer (PU-HPS) was fabricated by polycondensing polytetramethylene ether glycol (PTMEG), isophorone diisocyanate (IPDI) and p-hydroxydiphenyl disulfide (HPS) via one-pot method. The molecular mobility and phase morphology of PU-HPS can be tuned by adjusting the HPS content. Consequently, the dynamic exchange of hydrogen and disulfide bonds in the hard segment domains can also be tailored. The optimized sample manifests outstanding tensile strength (46.4 MPa), high toughness (109.1 MJ/m3), high self-healing efficiency after fracture (90.3%), complete scratch recovery (100%) and good puncture resistance. Therefore, this work provides a facile strategy for developing robust self-healing polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cordier, P.; Tournilhac, F.; Soulie-Ziakovic, C.; Leibler, L. Sel-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451, 977–80.

    Article  CAS  PubMed  Google Scholar 

  2. Kang, J.; Tok, J. B. H.; Bao, Z. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

    Article  Google Scholar 

  3. Feng, Z.; Hu, J.; Yu, B.; Tian, H.; Zuo, H.; Ning, N.; Tian, M.; Zhang, L. Environmentally friendly method to prepare thermo-reversible, self-healable biobased elastomers by one-step melt processing. ACS Appl. Polym. Mater. 2019, 1, 169–177.

    Article  CAS  Google Scholar 

  4. White, S.R.; Sottos, N. R.; Geubelle, P. H.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797.

    Article  CAS  PubMed  Google Scholar 

  5. Hager, M. D.; Greil, P.; Leyens, C.; Van Der Zwaag, S.; Schubert, U. S. Self-healing materials. Adv. Mater. 2010, 22, 5424–5430.

    Article  CAS  PubMed  Google Scholar 

  6. Mookhoek, S. D.; Blaiszik, B. J.; Fischer, H. R.; Sottos, N. R.; White, S. R.; Van der Zwaag, S. Peripherally decorated binary microcapsules containing two liquids. J. Mater. Chem. 2008, 18, 5390–5394.

    Article  CAS  Google Scholar 

  7. Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 2019, 58, 9682–9695.

    Article  CAS  Google Scholar 

  8. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities. Prog. Polym. Sci. 2018, 80, 39–93.

    Article  CAS  Google Scholar 

  9. Hu, J.; Mo, R.; Sheng, X.; Zhang, X. A self-healing polyurethane elastomer with excellent mechanical properties based on phase-locked dynamic imine bonds. Polym. Chem. 2020, 11, 2585–2594.

    Article  CAS  Google Scholar 

  10. Wang, H.; Liu, H. C.; Zhang, Y.; Xu, H.; Jin, B. Q.; Cao, Z. X.; Wu, H. T.; Huang, G. S.; Wu, J. R. A triple crosslinking design toward epoxy vitrimers and carbon fiber composites of high performance and multi-shape memory. Chinese J. Polym. Sci. 2021, 39, 736–744.

    Article  CAS  Google Scholar 

  11. Fortman, D. J.; Snyder, R. L.; Sheppard, D. T.; Dichtel, W. R. Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange. ACS Macro Lett. 2018, 7, 1226–1231.

    Article  CAS  PubMed  Google Scholar 

  12. Black, S. P.; Sanders, J. K.; Stefankiewicz, A. R. Disulfide exchange: exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev. 2014, 43, 1861–1872.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Q.; Liu, Y.; Zheng, H.; Li, C.; Zhang, Y.; Zhang, Q. Design and development of self-repairable and recyclable crosslinked poly(thiourethane-urethane) via enhanced aliphatic disulfide chemistry. J. Polym. Sci. 2020, 58, 1092–1104.

    Article  CAS  Google Scholar 

  14. Zhang, X.; Wang, S.; Jiang, Z.; Li, Y.; Jing, X. Boronic ester based vitrimers with enhanced stability via internal boron-nitrogen coordination. J. Am. Chem. Soc. 2020, 142, 21852–21860.

    Article  CAS  PubMed  Google Scholar 

  15. Xu, J.; Chen, J.; Zhang, Y.; Liu, T.; Fu, J. A fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 2021, 60, 7947–7955.

    Article  CAS  Google Scholar 

  16. Wu, H.; Jin, B.; Wang, H.; Wu, W.; Cao, Z.; Wu, J.; Huang, G. A degradable and self-healable vitrimer based on non-isocyanate polyurethane. Front. Chem. 2020, 8, 585569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, J.; Cai, L. H.; Weitz, D. A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 2017, 29, 1702616.

    Article  CAS  Google Scholar 

  18. Wang, H.; Liu, H.; Cao, Z.; Li, W.; Huang, X.; Zhu, Y.; Ling, F.; Xu, H.; Wu, Q.; Peng, Y.; Yang, B.; Zhang, R.; Kessler, O.; Huang, G.; Wu, J. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 11299–11305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song, Y.; Liu, Y.; Qi, T.; Li, G. L. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 0018, 57, 13838–13842.

    Article  CAS  Google Scholar 

  20. Liang, Z.; Huang, D.; Zhao, L.; Nie, Y.; Zhou, Z.; Hao, T.; Li, S. Self-healing polyurethane elastomer based on molecular design: combination of reversible hydrogen bonds and high segment mobility. J. Inorg. Organometal. Polym. Mater. 2020, 31, 683–694.

    Article  CAS  Google Scholar 

  21. Zuo, H.; Liu, Z.; Zhang, L.; Liu, G.; Ouyang, X.; Guan, Q.; Wu, Q.; You, Z. Self-healing materials enable free-standing seamless large-scale 3D printing. Sci. China Mater. 2021, 64, 1791–1800.

    Article  Google Scholar 

  22. Chen, S.; Bi, X.; Sun, L.; Gao, J.; Huang, P.; Fan, X.; You, Z.; Wang, Y. Poly(sebacoyl diglyceride) cross-linked by dynamic hydrogen bonds: a self-healing and functionalizable thermoplastic bioelastomer. ACS Appl. Mater. Interfaces 2016, 8, 20591–20599.

    Article  CAS  PubMed  Google Scholar 

  23. Peng, Y.; Yang, Y.; Wu, Q.; Wang, S.; Huang, G.; Wu, J. Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds. Polymer 2018, 157, 172–179.

    Article  CAS  Google Scholar 

  24. Miwa, Y.; Kurachi, J.; Kohbara, Y.; Kutsumizu, S. Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Commun. Chem. 2018, 1, 5.

    Article  CAS  Google Scholar 

  25. Zhang, L.; Xiong, H.; Wu, Q.; Peng, Y.; Zhu, Y.; Wang, H.; Yang, Y.; Liu, X.; Huang, G.; Wu, J. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Sci. China Mater. 2021, 64, 1780–1790.

    Article  CAS  Google Scholar 

  26. Xiong, H.; Zhang, L.; Wu, Q.; Zhang, H.; Peng, Y.; Zhao, L.; Huang, G.; Wu, J. A strain-adaptive, self-healing, breathable and perceptive bottle-brush material inspired by skin. J. Mater. Chem. A 2020, 8, 24645–24654.

    Article  CAS  Google Scholar 

  27. Zhang, L.; Wang, H.; Zhu, Y.; Xiong, H.; Wu, Q.; Gu, S.; Liu, X.; Huang, G.; Wu, J. Electron-donating effect enabled simultaneous improvement on the mechanical and self-healing properties of bromobutyl rubber ionomers. ACS Appl. Mater. Interfaces 2020, 12, 53239–53246.

    Article  CAS  PubMed  Google Scholar 

  28. Lai, J. C.; Jia, X. Y.; Wang, D. P.; Deng, Y. B.; Zheng, P.; Li, C. H.; Zuo, J. L.; Bao, Z. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers. Nat. Commun. 2019, 10, 1164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li, C. H.; Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, e1903762.

    PubMed  Google Scholar 

  30. Liu, Z.; Zhang, L.; Guan, Q.; Guo, Y.; Lou, J.; Lei, D.; Wang, S.; Chen, S.; Sun, L.; Xuan, H.; Jeffries, E. M.; He, C.; Qing, F. L.; You, Z. Biomimetic materials with multiple protective functionalities. Adv. Funct. Mater. 2019, 29, 1901058.

    Article  CAS  Google Scholar 

  31. Burattini, S.; Colquhoun, H. M.; Fox, J. D.; Friedmann, D.; Greenland, B. W.; Harris, P. J.; Hayes, W.; Mackay, M. E.; Rowan, S. J. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π stacking interactions. Chem. Commun. 2009, 6717–6719.

  32. Miyamae, K.; Nakahata, M.; Takashima, Y.; Harada, A. Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host-guest interactions. Angew. Chem. Int. Ed. 2015, 54, 8984–8987.

    Article  CAS  Google Scholar 

  33. Wei, H.; Yang, Y.; Huang, X.; Zhu, Y.; Wang, H.; Huang, G.; Wu, J. Transparent, robust, water-resistant and high-barrier self-healing elastomers reinforced with dynamic supramolecular nanosheets with switchable interfacial connections. J. Mater. Chem. A 2020, 8, 9013–9020.

    Article  CAS  Google Scholar 

  34. Yang, S.; Wang, S.; Du, X.; Du, Z.; Cheng, X.; Wang, H. Mechanically robust self-healing and recyclable flame-retarded polyurethane elastomer based on thermoreversible crosslinking network and multiple hydrogen bonds. Chem. Eng. J. 2020, 391, 123544.

    Article  CAS  Google Scholar 

  35. Wang, Y.; Huang, X.; Zhang, X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat. Commun. 2021, 12, 1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, e2005759.

    Article  PubMed  CAS  Google Scholar 

  37. Wu, B.; Liu, Z.; Lei, Y.; Wang, Y.; Liu, Q.; Yuan, A.; Zhao, Y.; Zhang, X.; Lei, J. Mutually-complementary structure design towards highly stretchable elastomers with robust strength and autonomous self-healing property. Polymer 2020, 186, 122003.

    Article  CAS  Google Scholar 

  38. Yao, Y.; Xu, Z.; Liu, B.; Xiao, M.; Yang, J.; Liu, W. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence. Adv. Funct. Mater. 2020, 31, 2006944.

    Article  CAS  Google Scholar 

  39. Wang, D.; Xu, J.; Chen, J.; Hu, P.; Wang, Y.; Jiang, W.; Fu, J. Transparent, mechanically strong, extremely tough, self-recoverable, healable supramolecular elastomers facilely fabricated via dynamic hard domains design for multifunctional applications. Adv. Funct. Mater. 2019, 30, 1907109.

    Article  CAS  Google Scholar 

  40. Lai, Y.; Kuang, X.; Zhu, P.; Huang, M.; Dong, X.; Wang, D. Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design. Adv. Mater. 2018, 30, e1802556.

    Article  PubMed  CAS  Google Scholar 

  41. Ying, W. B.; Yu, Z.; Kim, D. H.; Lee, K. J.; Hu, H.; Liu, Y.; Kong, Z.; Wang, K.; Shang, J.; Zhang, R.; Zhu, J.; Li, R. W. Waterproof, highly tough, and fast self-healing polyurethane for durable electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 11072–11083.

    Article  CAS  PubMed  Google Scholar 

  42. Krol, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52, 915–1015.

    Article  CAS  Google Scholar 

  43. Luo, M. C.; Zeng, J.; Xie, Z. T.; Wei, L. Y.; Huang, G.; Wu, J. Impact of hydrogen bonds dynamics on mechanical behavior of supramolecular elastomer. Polymer 2016, 105, 221–226.

    Article  CAS  Google Scholar 

  44. Liu, M.; Zhong, J.; Li, Z.; Rong, J.; Yang, K.; Zhou, J.; Shen, L.; Gao, F.; Huang, X.; He, H. A high stiffness and self-healable polyurethane based on disulfide bonds and hydrogen bonding. Eur. Polym. J. 2020, 124, 109475.

    Article  CAS  Google Scholar 

  45. Shi, S.; Peng, X.; Liu, T.; Chen, Y. N.; He, C.; Wang, H. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111, 168–176.

    Article  CAS  Google Scholar 

  46. Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 2014, 1, 237–240.

    Article  CAS  Google Scholar 

  47. Fan, C. J.; Huang, Z. C.; Li, B.; Xiao, W. X.; Zheng, E.; Yang, K. K.; Wang, Y. Z. A robust self-healing polyurethane elastomer: from H-bonds and stacking interactions to well-defined microphase morphology. Sci. China Mater. 2019, 62, 1188–1198.

    Article  CAS  Google Scholar 

  48. Hu, J.; Mo, R.; Jiang, X.; Sheng, X.; Zhang, X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer 2019, 183, 121912.

    Article  CAS  Google Scholar 

  49. Fan, C. J.; Wen, Z. B.; Xu, Z. Y.; Xiao, Y.; Wu, D.; Yang, K. K.; Wang, Y. Z. Adaptable strategy to fabricate self-healable and reprocessable poly(thiourethane-urethane) elastomers via reversible thiol-isocyanate click chemistry. Macromolecules 2020, 53, 4284–4293.

    Article  CAS  Google Scholar 

  50. Kim, S. M.; Jeon, H.; Shin, S. H.; Park, S. A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers. Adv. Mater. 2018, 30, 1705145.

    Article  CAS  Google Scholar 

  51. Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E. M.; He, C.; Qing, F. L.; Bao, X.; You, Z. A Highly efficient self-healing elastomer with unprecedented mechanical properties. Adv. Mater. 2019, 31, e1901402.

    Article  PubMed  CAS  Google Scholar 

  52. Xu, S.; Sheng, D.; Zhou, Y.; Wu, H.; Xie, H.; Tian, X.; Sun, Y.; Liu, X.; Yang, Y. A dual supramolecular crosslinked polyurethane with superior mechanical properties and autonomous self-healing ability. New J. Chem. 2020, 44, 7395–7400.

    Article  CAS  Google Scholar 

  53. Wu, Q.; Xiong, H.; Peng, Y.; Yang, Y.; Kang, J.; Huang, G.; Ren, X.; Wu, J. Highly stretchable and self-healing “solid-liquid” elastomer with strain-rate sensing capability. ACS Appl. Mater. Interfaces 2019, 11, 19534–19540.

    Article  CAS  PubMed  Google Scholar 

  54. Kuhl, N.; Bode, S.; Bose, R. K.; Vitz, J.; Seifert, A.; Hoeppener, S.; Garcia, S. J.; Spange, S.; van der Zwaag, S.; Hager, M. D.; Schubert, U. S. Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv. Funct. Mater. 2015, 25, 3295–3301.

    Article  CAS  Google Scholar 

  55. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Mechanically robust, self-healable, and highly stretchable “living” crosslinked polyurethane based on a reversible C-C bond. Adv. Funct. Mater. 2018, 28, 1706050.

    Article  CAS  Google Scholar 

  56. Ying, H.; Zhang, Y.; Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 2014, 5, 3218.

    Article  PubMed  CAS  Google Scholar 

  57. Yuan, C. e.; Rong, M. Z.; Zhang, M. Q. Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages. Polymer 2014, 55, 1782–1791.

    Article  CAS  Google Scholar 

  58. Wang, Y.; Guo, Q.; Su, G.; Cao, J.; Liu, J.; Zhang, X. Hierarchically structured self-healing actuators with superfast light- and magnetic-response. Adv. Funct. Mater. 2019, 29, 1906198.

    Article  CAS  Google Scholar 

  59. Lee, J.; Tan, M. W. M.; Parida, K.; Thangavel, G.; Park, S. A.; Park, T.; Lee, P. S. Water-processable, stretchable, self-healable, thermally stable, and transparent ionic conductors for actuators and sensors. Adv. Mater. 2020, 32, e1906679.

    Article  PubMed  CAS  Google Scholar 

  60. Jiang, Z.; Tan, M. L.; Taheri, M.; Yan, Q.; Tsuzuki, T.; Gardiner, M. G.; Diggle, B.; Connal, L. A. Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators. Angew. Chem. Int. Ed. 2020, 59, 7049–7056.

    Article  CAS  Google Scholar 

  61. Li, Y.; Li, W.; Sun, A.; Jing, M.; Liu, X.; Wei, L.; Wu, K.; Fu, Q. A self-reinforcing and self-healing elastomer with high strength, unprecedented toughness and room-temperature reparability. Mater. Horiz. 2021, 8, 267–275.

    Article  CAS  PubMed  Google Scholar 

  62. Qin, H.; Zhang, T.; Li, N.; Cong, H. P.; Yu, S. H. Anisotropic and self-healing hydrogels with multi-responsive actuating capability. Nat. Commun. 2019, 10, 2202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51873110), the Foundation of Guangdong Provincial Key Laboratory of Natural Rubber Processing and Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu-Sheng Liao or Jin-Rong Wu.

Electronic Supplementary Information

10118_2021_2607_MOESM1_ESM.pdf

A Robust Self-healing Polyurethane Elastomer Enabled by Tuning the Molecular Mobility and Phase Morphology through Disulfide Bonds

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HT., Jin, BQ., Wang, H. et al. A Robust Self-healing Polyurethane Elastomer Enabled by Tuning the Molecular Mobility and Phase Morphology through Disulfide Bonds. Chin J Polym Sci 39, 1299–1309 (2021). https://doi.org/10.1007/s10118-021-2607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2607-y

Keywords

Navigation