Skip to main content
Log in

Antibacterial Thermoplastic Polyurethane/PL-DOSS Composite Films

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Medical devices-related infections pose a great threat to patients and cause an increased morbidity and mortality. Herein, we prepare an antibacterial composite (TPU-x) through blending medical grade thermoplastic polyurethane (TPU) and the complex (PL-DOSS) of ε-polylysine (ε-PL) and docusate sodium (DOSS). >99% reduction of colony forming unit (CFU) can be obtained in TPU-x composite films even at relatively low content of PL-DOSS, e.g. 0.13% for Methicillin resistant S. aureus (MRSA) and 0.5% for E. coli. The excellent antibacterial activity is mainly attributed to the formation of PL-DOSS nanoparticles that are uniformly dispersed in the TPU matrix with a size of ∼100 nm. TPU-x composite films exhibit long-term stability in saline and good biocompatibility, and retain mechanical properties of TPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, H. A.; Baig, F. K.; Mehboob, R. Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482.

    Article  Google Scholar 

  2. Magill, S. S.; Edwards, J. R.; Bamberg, W.; Beldavs, Z. G.; Dumyati, G.; Kainer, M. A.; Lynfield, R.; Maloney, M.; Mcallister-Hollod, L.; Nadle, J.; Ray, S. M.; Thompson, D. L.; Wilson, L. E.; Fridkin, S. K.; Healthcare, E. I. P. Multistate point—prevalence survey of health care-associated infections. New Engl. J. Med. 2014, 370, 1198–1208.

    Article  CAS  PubMed  Google Scholar 

  3. Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015, 33, 637–652.

    Article  CAS  PubMed  Google Scholar 

  4. Peleg, A. Y.; Hooper, D. C. Hospital-acquired infections due to gram-negative bacteria REPLY. New Engl. J. Med. 2010, 363, 1483–1484.

    CAS  Google Scholar 

  5. Rutledge-Taylor, K.; Matlow, A.; Gravel, D.; Embree, J.; Le Saux, N.; Johnston, L.; Suh, K.; Embil, J.; Henderson, E.; John, M.; Roth, V.; Wong, A.; Shurgold, J.; Taylor, G.; Surv, C. N. I. A point prevalence survey of health care-associated infections in Canadian pediatric inpatients. Am. J. Infect. Control 2012, 40, 491–496.

    Article  PubMed  Google Scholar 

  6. Villani, M.; Bertoglio, F.; Restivo, E.; Bruni, G.; Iervese, S.; Arciola, C. R.; Carulli, F.; Iannace, S.; Bertini, F.; Visai, L. Polyurethane-based coatings with promising antibacterial properties. Materials 2020, 13, 4296–4317.

    Article  CAS  PubMed Central  Google Scholar 

  7. Lei, J. J.; Yao, G. Y.; Sun, Z. M.; Wang, B.; Yu, C. H.; Zheng, S. L. Fabrication of a novel antibacterial TPU nanofiber membrane containing Cu-loaded zeolite and its antibacterial activity toward Escherichia coli. J. Mater. Sci. 2019, 54, 11682–11693.

    Article  CAS  Google Scholar 

  8. Bergmeister, H.; Seyidova, N.; Schreiber, C.; Strobl, M.; Grasl, C.; Walter, I.; Messner, B.; Baudis, S.; Frohlich, S.; Marchetti-Deschmann, M.; Griesser, M.; di Franco, M.; Krssak, M.; Liska, R.; Schima, H. Biodegradable, thermoplastic polyurethane grafts for small diameter vascular replacements. Acta Biomater. 2015, 11, 104–113.

    Article  CAS  PubMed  Google Scholar 

  9. Zander, Z. K.; Chen, P. R.; Hsu, Y. H.; Dreger, N. Z.; Savariau, L.; Mcroy, W. C.; Cerchiari, A. E.; Chambers, S. D.; Barton, H. A.; Becker, M. L. Post-fabrication QAC-functionalized thermoplastic polyurethane for contact-killing catheter applications. Biomaterials 2018, 178, 339–350.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y.; Li, Y. F.; Li, J. H.; Gao, Y. L.; Tan, H.; Wang, K. J.; Li, J. S.; Fu, Q. Synthesis and antibacterial characterization of waterborne polyurethanes with gemini quaternary ammonium salt. Sci. Bull. 2015, 60, 1114–1121.

    Article  CAS  Google Scholar 

  11. Mankoci, S.; Kaiser, R. L.; Sahai, N.; Barton, H. A.; Joy, A. Bactericidal peptidomimetic polyurethanes with remarkable selectivity against Escherichia coli. ACS Biomater. Sci. Eng. 2017, 3, 2588–2597.

    Article  CAS  PubMed  Google Scholar 

  12. Yu, K.; Lo, J. C. Y.; Yan, M.; Yang, X. Q.; Brooks, D. E.; Hancock, R. E. W.; Lange, D.; Kizhakkedathu, J. N. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 2017, 116, 69–81.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, X. Y.; Zhao, Y. Q.; Zhang, Y. D.; Wang, A. Z.; Ding, X. K.; Li, Y.; Duan, S.; Ding, X. J.; Xu, F. J. Antimicrobial peptide-conjugated hierarchical antifouling polymer brushes for functionalized catheter surfaces. Biomacromolecules 2019, 20, 4171–4179.

    Article  CAS  PubMed  Google Scholar 

  14. Qi, F.; Qian, Y. X.; Shao, N.; Zhou, R. Y.; Zhang, S.; Lu, Z. Y.; Zhou, M.; Xie, J. Y.; Wei, T.; Yu, Q.; Liu, R. H. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interfaces 2019, 11, 18907–18913.

    Article  CAS  PubMed  Google Scholar 

  15. Peng, K. M.; Zou, T.; Ding, W.; Wang, R. N.; Guo, J. S.; Round, J. J.; Tu, W. P.; Liu, C.; Hu, J. Q. Development of contact-killing non-leaching antimicrobial guanidyl-functionalized polymers via click chemistry. RSC Adv. 2017, 7, 24903–24913.

    Article  CAS  Google Scholar 

  16. Zhang, X. H.; Wang, W.; Yu, D. Synthesis of waterborne polyurethane-silver nanoparticle antibacterial coating for synthetic leather. J. Coat. Technol. Res. 2018, 15, 415–423.

    Article  CAS  Google Scholar 

  17. Hsu, S. H.; Tseng, H. J.; Lin, Y. C. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 2010, 31, 6796–6808.

    Article  CAS  PubMed  Google Scholar 

  18. Yu, H.; Liu, L.; Li, X.; Zhou, R. T.; Yan, S. J.; Li, C. S.; Luan, S. F.; Yin, J. H.; Shi, H. C. Fabrication of polylysine based antibacterial coating for catheters by facile electrostatic interaction. Chem. Eng. J. 2019, 360, 1030–1041.

    Article  CAS  Google Scholar 

  19. Liu, L.; Shi, H. C.; Yu, H.; Zhou, R. T.; Yin, J. H.; Luan, S. F. One-step hydrophobization of tannic acid for antibacterial coating on catheters to prevent catheter-associated infections. Biomater. Sci. 2019, 7, 5035–5043.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. F.; Hong, Q. F.; Chen, Y. J.; Lian, X. X.; Xiong, Y. F. Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf., B 2012, 100, 77–83.

    Article  CAS  Google Scholar 

  21. Zhao, C. W.; Zhou, L.; Chiao, M.; Yang, W. T. Antibacterial hydrogel coating: strategies in surface chemistry. Adv. Colloid Interface Sci. 2020, 285, 102280–102296.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, K.; Kim, K.; Lee, E. A.; Liu, S. S.; Kabli, S.; Alsudir, S. A.; Albrahim, S.; Zhou, A.; Park, T. G.; Lee, H.; Almalik, A. M.; Karp, J. M.; Alhasan, A. H.; Lee, Y. Robust low friction antibiotic coating of urethral catheters using a catechol-functionalized polymeric hydrogel film. Front. Mater 2019, 6, 274–286.

    Article  Google Scholar 

  23. Zhao, Y. Q.; Sun, Y. J.; Zhang, Y. D.; Ding, X. K.; Zhao, N. N.; Yu, B. R.; Zhao, H.; Duan, S.; Xu, F. J. Well-defined gold nanorod/polymer hybrid coating with inherent antifouling and photothermal bactericidal properties for treating an infected hernia. ACS Nano 2020, 14, 2265–2275.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao, C. X.; Zhang, W. D.; Mai, A. P.; Huang, X. M.; Ouyang, Y. S. Synthesis and characterization of waterborne polyurethane/Cu(II)-loaded hydroxyapatite nanocomposites with antibacterial activity. J. Nanosci. Nanotechnol. 2011, 11, 6779–6787.

    Article  CAS  PubMed  Google Scholar 

  25. Ma, H. Y.; Darmawan, E. T.; Zhang, M.; Zhang, L.; Bryers, J. D. Development of a poly(ether urethane) system for the controlled release of two novel anti-biofilm agents based on gallium or zinc and its efficacy to prevent bacterial biofilm formation. J. Control. Release 2013, 172, 1035–1044.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Y.; Yan, L. D.; Wang, R.; Fan, H. J.; Zhang, Q. Y. Antimicrobial polyurethane synthetic leather coating with in-situ generated nano-TiO2. Fibers Polym. 2010, 11, 689–694.

    Article  CAS  Google Scholar 

  27. Jiang, G. F.; Li, X. F.; Che, Y. L.; Lv, Y.; Liu, F.; Wang, Y. Q.; Zhao, C. C.; Wang, X. J. Antibacterial and anticorrosive properties of CuZnO@RGO waterborne polyurethane coating in circulating cooling water. Environ. Sci. Pollut. Res. 2019, 26, 9027–9040.

    Article  CAS  Google Scholar 

  28. Wang, C. H.; Mu, C. D.; Lin, W.; Xiao, H. N. Functional-modified polyurethanes for rendering surfaces antimicrobial: an overview. Adv. Colloid Interface Sci. 2020, 283, 102235–102258.

    Article  CAS  PubMed  Google Scholar 

  29. Patil, C. K.; Jirimali, H. D.; Paradeshi, J. S.; Chaudhari, B. L.; Gite, V. V. Functional antimicrobial and anticorrosive polyurethane composite coatings from algae oil and silver doped egg shell hydroxyapatite for sustainable development. Prog. Org. Coat. 2019, 128, 127–136.

    Article  CAS  Google Scholar 

  30. Toker, R. D.; Kayaman-Apohan, N.; Kahraman, M. V. UV-curable nano-silver containing polyurethane based organic-inorganic hybrid coatings. Prog. Org. Coat. 2013, 76, 1243–1250.

    Article  CAS  Google Scholar 

  31. Macocinschi, D.; Filip, D.; Zaltariov, M. F.; Varganici, C. D. Thermal and hydrolytic stability of silver nanoparticle polyurethane biocomposites for medical applications. Polym. Degrad. Stabil. 2015, 121, 238–246.

    Article  CAS  Google Scholar 

  32. Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H.; Yu, J.; Guo, Z. X. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35, 713–720.

    Article  CAS  Google Scholar 

  33. Rezvani, E.; Rafferty, A.; McGuinness, C.; Kennedy, J. Adverse effects of nanosilver on human health and the environment. Acta Biomater. 2019, 94, 145–159.

    Article  CAS  PubMed  Google Scholar 

  34. Danese, P. N. Antibiofilm approaches: prevention of catheter colonization. Chem. Biol. 2002, 9, 873–880.

    Article  CAS  PubMed  Google Scholar 

  35. Donelli, G.; Francolini, I. Efficacy of antiadhesive, antibiotic and antiseptic coatings in preventing catheter-related infections: Review. J. Chemother. 2001, 13, 595–606.

    Article  CAS  PubMed  Google Scholar 

  36. Elliott, T. S. J. The prevention of central venous catheter-related sepsis. J. Chemother. 2001, 13, 234–238.

    Article  PubMed  Google Scholar 

  37. Ganewatta, M. S.; Tang, C. B. Controlling macromolecular structures towards effective antimicrobial polymers. Polymer 2015, 63, A1–A29.

    Article  CAS  Google Scholar 

  38. Tan, J.; Tay, J.; Hedrick, J.; Yang, Y. Y. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020, 252, 120078–120117.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi, H.; Caputo, G. A.; Vemparala, S.; Kuroda, K. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjuate Chem. 2017, 28, 1340–1350.

    Article  CAS  Google Scholar 

  40. Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239–1250.

    Article  CAS  Google Scholar 

  41. Villani, M.; Consonni, R.; Canetti, M.; Bertoglio, F.; Iervese, S.; Bruni, G.; Visai, L.; Iannace, S.; Bertini, F. Polyurethane-based composites: effects of antibacterial fillers on the physical-mechanical behavior of thermoplastic polyurethanes. Polymers 2020, 12, 362–383.

    Article  CAS  PubMed Central  Google Scholar 

  42. Guo, Y. F.; Zhang, H. F.; Duan, S.; Ding, X. K.; Hu, Y.; Ding, X. J.; Xu, F. J. Bulk modification of thermoplastic polyurethanes for self-sterilization of trachea intubation. Macromol. Biosci. 2020, 21, 200318.

    Google Scholar 

  43. Qiao, M. Y.; Ren, T.; Huang, T. S.; Weese, J.; Liu, Y.; Ren, X. H.; Farag, R. N-Halamine modified thermoplastic polyurethane with rechargeable antimicrobial function for food contact surface. RSC Adv. 2017, 7, 1233–1240.

    Article  CAS  Google Scholar 

  44. Ushimaru, K.; Hamano, Y.; Katano, H. Antimicrobial activity of ε-poly-L-lysine after forming a water-insoluble complex with an anionic surfactant. Biomacromolecules 2017, 18, 1387–1392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51773201 and 51973212), the Bureau of Science and Technology of Changchun (No. 19SS005), the Department of Science and Technology of Jilin Province (No. 20200301017RQ) and the Joint Program of CAS-Jilin Province (No. 2019SYHZ0002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao-Miao Han or Sheng-Xiang Ji.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Guo, JW., Liu, YD. et al. Antibacterial Thermoplastic Polyurethane/PL-DOSS Composite Films. Chin J Polym Sci 39, 1020–1028 (2021). https://doi.org/10.1007/s10118-021-2578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2578-z

Keywords

Navigation