Skip to main content

Advertisement

Log in

Fabrication of Silver Yolk@Porous Janus Polymer Shell Nanospheres for Synergistic Catalysis

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Yolk-shell nanostructures have recently attracted tremendous research interests in various areas because of their unique structural merits. Currently, there is an urgent need for developing porous shells with multifunctional features to enhance their performance in various applications. Herein, advanced yolk-shell nanospheres have been facilely prepared by encapsulating silver nanoparticles with porous Janus polymer shells that consist of a hypercrosslinked polystyrene (xPS) outer layer and a tethered poly(acrylic acid) (PAA) brush lining. The xPS outer layer possesses well-developed porosity as mass diffusion pathways. More importantly, the tethered PAA brushes with customized carboxyl groups exhibit great affinity toward specific species (e.g., cationic dyes), leading to their enrichment from the bulk solution into the interior cavity. The unusual combination of highly porous outer layers with customizable inbuilt polymer linings in the porous Janus shells endows them with great promise for synergistically catalytic degradation of cationic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.; Feng, J.; Bai, Y.; Zhang, Q.; Yin, Y. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev.2016, 116, 10983–11060.

    Article  CAS  Google Scholar 

  2. Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun.2011, 47, 12578–12591.

    Article  CAS  Google Scholar 

  3. Sun, X.; Zhu, W.; Matyjaszewski, K. Protection of opening lids: very high catalytic activity of lipase immobilized on core-shell nanoparticles. Macromolecules2018, 51, 289–296.

    Article  CAS  Google Scholar 

  4. Cui, Z. M.; Chen, Z.; Cao, C. Y.; Jiang, L.; Song, W. G. A yolk-shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chem. Commun.2013, 49, 2332–2334.

    Article  CAS  Google Scholar 

  5. Kamata, K.; Lu, Y.; Xia, Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J. Am. Chem. Soc.2003, 125, 2384–2385.

    Article  CAS  Google Scholar 

  6. Xu, F.; Lu, Y.; Ma, J.; Huang, Z.; Su, Q.; Fu, R.; Wu, D. Facile, general and template-free construction of monodisperse yolk-shell metal@carbon nanospheres. Chem. Commun.2017, 53, 12136–12139.

    Article  CAS  Google Scholar 

  7. Du, X.; Zhao, C.; Luan, Y.; Zhang, C.; Jaroniec, M.; Huang, H.; Zhang, X.; Qiao, S. Z. Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. J. Mater. Chem. A2017, 5, 21560–21569.

    Article  CAS  Google Scholar 

  8. Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem. Int. Ed.2011, 50, 6799–802.

    Article  CAS  Google Scholar 

  9. Zheng, D.; Cao, X. N.; Wang, X. Precise formation of a hollow carbon nitride structure with a Janus surface to promote water splitting by photoredox catalysis. Angew. Chem. Int. Ed.2016, 55, 11512–11516.

    Article  CAS  Google Scholar 

  10. Fan, J. B.; Song, Y.; Liu, H.; Lu, Z.; Zhang, F.; Liu, H.; Meng, J.; Gu, L.; Wang, S.; Jiang, L. A general strategy to synthesize chemically and topologically anisotropic Janus particles. Sci. Adv.2017, 3, e1603203.

    Article  Google Scholar 

  11. Zhang, L.; Yu, J.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z. Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun.2013, 4, 1443.

    Article  Google Scholar 

  12. Liu, P.; Liu, A. T.; Kozawa, D.; Dong, J.; Yang, J. F.; Koman, V. B.; Saccone, M.; Wang, S.; Son, Y.; Wong, M. H.; Strano, M. S. Autoperforation of 2D materials for generating two-terminal memristive Janus particles. Nat. Mater.2018, 17, 1005–1012.

    Article  CAS  Google Scholar 

  13. Wang, H.; Min, S.; Wang, Q.; Li, D.; Casillas, G.; Ma, C.; Li, Y.; Liu, Z.; Li, L. J.; Yuan, J.; Antonietti, M.; Wu, T. Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano2017, 11, 4358–4364.

    Article  CAS  Google Scholar 

  14. Chen, Q.; Bae, S. C.; Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature2011, 469, 381–384.

    Article  CAS  Google Scholar 

  15. Zhang, J.; Grzybowski, B. A.; Granick, S. Janus particle synthesis, assembly, and application. Langmuir2017, 33, 6964–6977.

    Article  CAS  Google Scholar 

  16. Guo, Z. H.; Le, A. N.; Feng, X.; Choo, Y.; Liu, B.; Wang, D.; Wan, Z.; Gu, Y.; Zhao, J.; Li, V.; Osuji, C. O.; Johnson, J. A.; Zhong, M. Janus graft block copolymers: design of a polymer architecture for independently tuned nanostructures and polymer properties. Angew. Chem. Int. Ed.2018, 57, 8493–8497.

    Article  CAS  Google Scholar 

  17. Yang, J.; Zhang, F.; Chen, Y.; Qian, S.; Hu, P.; Li, W.; Deng, Y.; Fang, Y.; Han, L.; Luqman, M.; Zhao, D. Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chem. Commun.2011, 47, 11618–11620.

    Article  CAS  Google Scholar 

  18. Lin, Y.; Xiong, K.; Lu, Z.; Liu, S.; Zhang, Z.; Lu, Y.; Fu, R.; Wu, D. Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application. Chem. Commun.2017, 53, 9777–9780.

    Article  CAS  Google Scholar 

  19. Gao, H.; Ding, L.; Li, W.; Ma, G.; Bai, H.; Li, L. Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide. ACS Macro Lett.2016, 5, 377–381.

    Article  CAS  Google Scholar 

  20. Mai, W. C.; Zuo, Y.; Li, C. F.; Wu, J. L.; Leng, K. Y.; Zhang, X. C.; Liu, R. L.; Fu, R. W.; Wu, D. C. Functional nanonetwork-structured polymers with inbuilt poly(acrylic acid) linings for enhanced adsorption. Polym. Chem.2017, 8, 4771–4775.

    Article  CAS  Google Scholar 

  21. Jia, Z.; Wang, K.; Tan, B.; Gu, Y. Hollow hyper-cross-linked nanospheres with acid and base sites as effcient and water-stable catalysts for one-pot tandem reactions. ACS Catal.2017, 7, 3693–3702.

    Article  CAS  Google Scholar 

  22. Wang, S.; Zhang, M.; Zhang, W. Yolk-shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal.2011, 1, 207–211.

    Article  CAS  Google Scholar 

  23. Liao, G. F.; Li, Q.; Zhao, W. Z.; Pang, Q. H.; Gao, H. Y.; Xu, Z. S. In-situ construction of novel silver nanoparticle decorated polymeric spheres as highly active and stable catalysts for reduction of methylene blue dye. Appl. Catal., A2018, 549, 102–111.

    Article  CAS  Google Scholar 

  24. Guo, W.; Zhang, F.; Lin, C.; Wang, Z. L. Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv. Mater.2012, 24, 4761–4764.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51925308, U1601206, 51672313, 51702370, and 51872336), National Program for Support of Top-notch Young Professionals, Leading Scientific, Technical and Innovation Talents of Guangdong Special Support Program (No. 2017TX04C248), Fundamental Research Funds for the Central Universities (Nos. 18lgzd10 and 17lgpy83), and the Science and Technology Program of Guangzhou (No. 201704020059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang, Ruo-wen Fu or Ding-cai Wu.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Sh., Lin, Yh., Guo, Wt. et al. Fabrication of Silver Yolk@Porous Janus Polymer Shell Nanospheres for Synergistic Catalysis. Chin J Polym Sci 38, 847–852 (2020). https://doi.org/10.1007/s10118-020-2419-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2419-5

Keywords

Navigation