Skip to main content
Log in

PEN/BADCy Interlayer Dielectric Films with Tunable Microstructures via an Assist of Temperature for Enhanced Frequency Stability

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Low dielectric interlayer films have become an important element to ensure the development of the microelectronics industry. A kind of flexible interlayer dielectrics, polyarylene ether nitrile/bisphenol A cyanate ester (PEN/BADCy) film, with good thermal stability and low frequency dependence, has been developed by solution casting method. Herein, materials were designed to incorporate bisphenol A cyanate ester as a part of blend, contributing to the frequency stability and structural integrity. The morphological study combined with electron microscopy revealed the uniform and flexible microstructure information with controllable morphology through self-polymerization of cyanate esters with different prepolymerization time and curing temperatures. The dielectric films could present high thermal stability with Tg>180 °C. Significant improvement in the dielectric properties was achieved for the dielectric constant and loss was much stabler than neat PEN over the frequency range from 100 Hz to 5 MHz. When the prepolymerization time was 3 h and final curing temperature reached 230 °C, the dielectric constant and dielectric loss of the films were 3.36 and 0.013 at 100 kHz, respectively. The dimensional stability (CTE = 53.67 × 10−6 K−1) was confirmed and considered beneficial to use as an interlayer dielectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baklanov, M. R.; Adelmann, C.; Zhao, L.; Gendt, S. D., Advanced interconnects: materials, processing, and reliability. ECS J. Solid State Sci. Technol., 2014, 4, Y1–Y4.

    Google Scholar 

  2. Sunday, C E.; Montgomery, K. R.; Amoah, P. K.; Obeng, Y. S., Broadband dielectric spectroscopic characterization of thermal stability of low-k dielectric thin films for micro- and nanoelectronic applications. ECS J. Solid State Sci. Technol., 2017, 6, N155–N162.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsujimura, M., The way to zeros: the future of semiconductor device and chemical mechanical polishing technologies. Jpn. J. Appl. Phys., 2016, 55, 6S3.

    Google Scholar 

  4. Yuan, C.; Jin, K.; Li, K.; Diao, S.; Tong, J.; Fang, Q., Non-porous low-k dielectric films based on a new structural amorphous fluoropolymer. Adv. Mater., 2013, 25, 4875–4878.

    CAS  PubMed  Google Scholar 

  5. Aziz, S. B.; Kadir, M. F. Z.; Hamsan, M. H.; Woo, H. J.; Brza, M. A., Development of polymer blends based on PVA: POZ with low dielectric constant for microelectronic applications. Sci. Rep., 2019, 9, 13163.

    PubMed  PubMed Central  Google Scholar 

  6. Ramani, C.; Ramachandran, R.; Amarendra, G.; Alam, S., Direct correlation between free volume and dielectric constant in a fluorine-containing polyimide blend. J. Phys.: Conf. Ser., 2015, 618, 012025.

    Google Scholar 

  7. Volksen, W.; Miller, R. D.; Dubois, G., Low dielectric constant materials. Chem. Rev., 2010, 110, 56–110.

    CAS  PubMed  Google Scholar 

  8. Ortiz, R. P.; Facchetti, A.; Marks, T. J., High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev., 2010, 110, 205–239.

    CAS  Google Scholar 

  9. Qian, C.; Bei, R.; Zhu, T.; Zheng, W.; Liu, S.; Chi, Z.; Aldred, M. P.; Chen, X.; Zhang, Y.; Xu, J., Facile strategy for intrinsic low-k dielectric polymers: molecular design based on secondary relaxation behavior. Macromolecules, 2019, 52, 4601–4609.

    CAS  Google Scholar 

  10. Chen, Z.; Pei, J.; Li, R., Study of the preparation and dielectric property of PP/SMA/PVDF blend material. Appl. Sci., 2017, 7, 389.

    Google Scholar 

  11. Chen, L.; Li, K.; Li, B.; Ren, D.; Chen, S.; Xu, M.; Liu, X., Enhanced thermal conductivity of benzoxazine nanocomposites based on non-covalent functionalized hexagonal boron nitride. Compos. Sci. Technol., 2019, 182, 107741.

    CAS  Google Scholar 

  12. Tao, D.; Li, X.; Dong, Y.; Zhu, Y.; Yuan, Y.; Ni, Q.; Fu, Y.; Fu, S., Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile. Compos. Sci. Technol., 2020, 188, 107992.

    CAS  Google Scholar 

  13. Zhang, Y.; Shen, Y.; Shi, K.; Wang, T.; Eileen, H. J., Constructing a filler network for thermal conductivity enhancement in epoxy composites via reaction-induced phase separation. Compos. Part A, 2018, 110, 62–69.

    CAS  Google Scholar 

  14. Kim, S. Y.; Lim, T. W.; Sottos, N. R.; White, S. R., Manufacture of carbon-fiber prepreg with thermoplastic/epoxy resin blends and microencapsulated solvent healing agents. Compos. Part A, 2019, 121, 365–375.

    CAS  Google Scholar 

  15. You, Y.; Liu, S.; Tu, L.; Wang, Y.; Zhan, C.; Du, X.; Wei, R.; Liu, X., Controllable fabrication of poly(arylene ether nitrile) dielectrics for thermal-resistant film capacitors. Macromolecules, 2019, 52, 5850–5859.

    CAS  Google Scholar 

  16. Wang, L.; Liu, X.; Liu, C.; Zhou, X.; Liu, C.; Cheng, M.; Wei, R.; Liu, X., Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties. Chem. Eng. J., 2020, 384, 123231.

    CAS  Google Scholar 

  17. Qi, Q.; Zheng, P.; Lei, Y.; Liu, X., Design of bi-modal pore structure polyarylene ether nitrile/SiO2 foams with ultralow-k dielecrric and wave transparent properties by supercritical carbon dioxide. Compos. Part B, 2019, 173, 106915.

    Google Scholar 

  18. Lei, X.; Tong, L.; Pan, H.; Yang, G.; Liu, X. Preparation of polyarylene ether nitriles/fullerene composites with low dielectric constant by cosolvent evaporation. J. Mater. Sci.: Mater. Electron.2019, 30, 18297–18305.

    CAS  Google Scholar 

  19. Tong, L.; Lei, X.; Yang, G.; Liu, X., Self-toughening and self-enhancement poly(arylene ether nitrile) with low dielectric constant by solid crosslinking reaction. Polymers, 2019, 11, 1403.

    PubMed Central  Google Scholar 

  20. Pu, Z.; Zheng, X.; Tian, Y.; Hu, L.; Zhong, J., Flexible ultrahightemperature polymer-based dielectrics with high permittivity for film capacitor applications. Polymers, 2017, 9, 596.

    PubMed Central  Google Scholar 

  21. Guan, Q.; Yuan, L.; Zhang, Y.; Gu, A.; Liang, G. Improving the mechanical, thermal, dielectric and flame retardancy properties of cyanate ester with the encapsulated epoxy resin-penetrated aligned carbon nanotube bundle. Compos. Part B2017, 123, 81–91.

    CAS  Google Scholar 

  22. Gu, J.; Dong, W.; Tang, Y.; Guo, Y.; Tang, L.; Kong, J.; Tadakamalla, S.; Wang, B.; Guo, Z., Ultralow dielectric, fluoride-containing cyanate ester resins with improved mechanical properties and high thermal and dimensional stabilities. J. Mater. Chem. C, 2017, 5, 6929–6936.

    CAS  Google Scholar 

  23. Inamdar, A.; Cherukattu, J.; Anand, A.; Kandasubramanian, B., Thermoplastic-toughened high-temperature cyanate esters and their application in advanced composites. Ind. Eng. Chem. Res., 2018, 57, 4479–4504.

    CAS  Google Scholar 

  24. Gu, J.; Yang, X.; Li, C.; Kou, K., Synthesis of cyanate ester microcapsules via solvent evaporation technique and its application in epoxy resins as a healing agent. Ind. Eng. Chem. Res., 2016, 55, 10941–10946.

    CAS  Google Scholar 

  25. Wang, B.; Liu, L.; Liang, G.; Yuan, L.; Gu, A., Boost up dielectric constant and push down dielectric loss of carbon nanotube/cyanate ester composites via gradient and layered structure design. J. Mater. Chem. A, 2015, 3, 23162–23169.

    CAS  Google Scholar 

  26. Fyfe, C. A.; Niu, J.; Rettig, S. J.; Burlinson, N. E., High-resolution carbon-13 and nitrogen-15 NMR investigations of themechanism of the curing reactions of cyanate-based polymer resinsin solution and the solid state. Maoromeluceles, 1922, 25, 6289–6301.

    Google Scholar 

  27. Ma, J.; Lei, X.; Tian, D.; Yuan, L.; Liao, C., Curing behavior and network formation of cyanate ester resin/polyethylene glycol. J. Appl. Polym. Sci., 2015, 132, 41841–41852.

    Google Scholar 

  28. Simon, S. L.; Gillham, J. K., Cure Kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material. J. Appl. Polym. Sci., 1993, 47, 461–485.

    CAS  Google Scholar 

  29. Harvey, B. G.; Guenthner, A. J.; Koontz, T. A.; Storch, P. J.; Reams, J. T.; Groshens, T. J., Sustainable hydrophobic thermosetting resins and polycarbonates from turpentine. Green Chem., 2016, 18, 2416–2423.

    CAS  Google Scholar 

  30. Wei, J.; Meng, X.; Chen, X.; Bai, Y.; Song, J.; Yan, N.; Zhu, L.; Shen, A. Facile synthesis of fluorinated poly(arylene ether nitrile) and its dielectric properties. J. Appl. Polym. Sci.2018, 135, 46837–46844.

    Google Scholar 

  31. Hamerton, I.; Hay, J. N., Recent technological developments in cyanate ester resins. High Perform. Polym., 1998, 10, 163–174.

    CAS  Google Scholar 

  32. Zhan, G.; Hu, S.; Yu, Y.; Li, S.; Tang, X., The study on poly(ether sulfone) modified cyanate ester resin and epoxy resin cocuring blends. J. Appl. Polym. Sci., 2009, 113, 60–70.

    CAS  Google Scholar 

  33. Hwang, J. W.; Cho, K.; Yoon, T. H.; Park, C. E., Effects of molecular weight of polysulfone on phase separation behavior for cyanate ester/polysulfone blends. J. Appl. Polym. Sci., 2000, 77, 921–927.

    CAS  Google Scholar 

  34. Ding, Y.; Liu, R.; Liu, H., Investigation on viscoelastic phase separation of phenolphthalein poly(ether ether ketone)/epoxy blends system. Polym. Polym. Compos., 2020, 28, 199–208.

    CAS  Google Scholar 

  35. Tree, D. R.; Dos Santos, L. F.; Wilson, C. B.; Scott, T. R.; Garcia, J. U.; Fredrickson, G. H., Mass-transfer driven spinodal decomposition in a ternary polymer solution. Soft Matter, 2019, 15, 4614–4628.

    CAS  PubMed  Google Scholar 

  36. Hwang, J. W.; Cho, K.; Park, C. E.; Huh, W., Phase separation behavior of cyanate ester resin/polysulfone blends. J. Appl. Polym. Sci., 1999, 74, 33–45.

    CAS  Google Scholar 

  37. Kim, B. S.; Chiba, T.; Inoue, T., Morphology development via reaction-induced phase separation In epoxy/poly(ether sulfone) blends: morphology control using poly(ether sulfone) with functional end-groups. Polymer, 1995, 36, 43–47.

    CAS  Google Scholar 

  38. Snow, A. W.; Griffith, J. R.; Marullo, N. P., Syntheses and characterization of heteroatom-bridged metal-free phthalocyanine network polymers and model compounds. Macromolecules, 1984, 17, 1614–1624.

    CAS  Google Scholar 

  39. Chen, S.; Ren, D.; Li, B.; Li, K.; Chen, L.; Xu, M.; Liu, X., Benzoxazine containing fluorinated aromatic ether nitrile linkage: preparation, curing kinetics and dielectric properties. Polymers, 2019, 11, 1036.

    PubMed Central  Google Scholar 

  40. Zeng, X.; Deng, L.; Yao, Y.; Sun, R.; Xu, J.; Wong, C. P., Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J. Mater. Chem. C, 2016, 4, 6037–6044.

    CAS  Google Scholar 

  41. Zeltmann, S. E.; Chen, B.; Gupta, N., Thermal expansion and dynamic mechanical analysis of epoxy matrix-borosilicate glass hollow particle syntactic foams. J. Cell. Plast., 2017, 54, 463–481.

    Google Scholar 

  42. Liang, T.; Qi, L.; Ma, Z.; Xiao, Z.; Wang, Y.; Liu, H.; Zhang, J.; Guo, Z.; Liu, C.; Xie, W.; Ding, T.; Lu, N., Experimental study on thermal expansion coefficient of composite multi-layered flaky gun propellants. Compos. Part B, 2019, 166, 428–435.

    CAS  Google Scholar 

  43. Yoo, S.; Kandare, E.; Shanks, R.; Maadeed, M. A. A.; Khatibi, A. A., Thermophysical properties of multifunctional glass fibre reinforced polymer composites incorporating phase change materials. Thermochim. Acta, 2016, 642, 25–31.

    CAS  Google Scholar 

  44. Hamerton, I.; Howlin, B. J.; Klewpatinond, P.; Takeda, S., Examination of the thermal and thermomechanical behavior of novel cyanate ester homopolymers and blends with low coefficients of thermal expansion. Macromolecules, 2009, 42, 7718–7735.

    CAS  Google Scholar 

  45. Yao, Y.; Zeng, X.; Guo, K.; Sun, R.; Xu, J. B., The effect of interfacial state on the thermal conductivity of functionalized Al2O3 fiNed glass fibers reinforced polymer composites. Compos. Part A, 2015, 69, 49–55.

    CAS  Google Scholar 

  46. Wong, C. P.; Bollampally R. S., Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci., 1999, 74, 3396–3403.

    CAS  Google Scholar 

  47. Wooster, T. J.; Abrol S.; Hey J. M.; MacFarlane D. R., Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos. Part A, 2004, 35, 75–82.

    Google Scholar 

  48. Gu A.; Chang F. C., A novel preparation of polyimide/clay hybrid films with low coefficient of thermal expansion. J. Appl. Polym. Sci., 2000, 79, 289–294.

    Google Scholar 

  49. Goyal R. K.; Jadhav P.; Tiwari A. N., Preparation and properties of new polyphenylene sulfide/AlN composites for electronic packaging. J. Electron. Mater., 2011, 40, 1377–1383.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51603029 and 51773028), China Postdoctoral Science Foundation (No. 2017M623001), and National Postdoctoral Program for Innovative Talents (No. BX201700044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Fen Tong or Xiao-Bo Liu.

Electronic Supplementary Information

10118_2020_2417_MOESM1_ESM.pdf

PEN/BADCy Interlayer Dielectric Films with Tunable Microstructures via an Assist of Temperature for Enhanced Frequency Stability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, XT., Tong, LF., Xu, MZ. et al. PEN/BADCy Interlayer Dielectric Films with Tunable Microstructures via an Assist of Temperature for Enhanced Frequency Stability. Chin J Polym Sci 38, 1258–1266 (2020). https://doi.org/10.1007/s10118-020-2417-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2417-7

Keywords

Navigation