Skip to main content
Log in

Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) is one of the most important bio-plastics, and chemical modification of the already-polymerized poly(lactic acid) chains may enable optimization of its material properties and expand its application areas. In this study, we demonstrated that poly(lactic acid) can be readily dissolved in acrylic acid at room temperature, and acrylic acid can be graft-polymerized onto poly(lactic acid) chains in solution with the help of photoinitiator benzophenone under 254 nm ultraviolet (UV) irradiation. Similar photo-grafting polymerization of acrylic acid (PAA) has only been studied before in the surface modification of polymer films. The graft ratio could be controlled by various reaction parameters, including irradiation time, benzophenone content, and monomer/polymer ratios. This photo-grafting reaction resulted in high graft ratio (graft ratio PAA/PLA up to 180%) without formation of homopolymers of acrylic acid. When the PAA/PLA graft ratio was higher than 100%, the resulting PLA-g-PAA polymer was found dispersible in water. The pros and cons of the photo-grafting reaction were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Di Lorenzo, M. L.; Androsch R. (eds.) Synthesis, structure and properties of poly(lactic acid). Springer, Switzerland, 2018, p. 1.

    Google Scholar 

  2. Aurus, R.; Lim, L.; Selke, S. E. M.; Tsuji, H. (eds.) Poly(lactic acid): Synthesis, structures, properties, processing, and Applications. Wiley, Canada, 2010, p. 141.

    Book  Google Scholar 

  3. Krishnan, S.; Pandey, P.; Mohanty, S.; Nayak, S. K. Toughening of poly(lactic acid): An overview of research progress. Polym. Plastic. Tech. Eng.2016, 55, 1623–1652.

    Article  CAS  Google Scholar 

  4. Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliver. Rev.2016, 107, 153–159.

    Article  CAS  Google Scholar 

  5. Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Poly(lactic acid) (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliver. Rev.2016, 107, 163–168.

    Article  CAS  Google Scholar 

  6. Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci.2010, 35, 338-356.

    Article  CAS  Google Scholar 

  7. Critechfield, F. E.; Koleske, J. V. US Patent 3, 760, 034, 1973.

    Google Scholar 

  8. Wu, C. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid—Characterization and biodegradability assessment. Macromol. Biosci.2005, 5, 352–361.

    Article  CAS  Google Scholar 

  9. Dorman, G.; Nakamura, H.; Pulsipher, A.; Prestwich, G. D. The life of pi star: Exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev.2016, 116, 15284–15398.

    Article  CAS  Google Scholar 

  10. Yang, W. T.; Ranby, B. Bulk surface photografting process and its applications. I. Reactions and kinetics. J. Appl. Polym. Sci.1996, 62, 533–543.

    Article  CAS  Google Scholar 

  11. Li, Y.; DeSimone, J. M.; Poon, C.; Samulski, E. T. Photoinduced graft polymerization of styrene onto polypropylene substrates. J. Appl. Polym. Sci.1997, 64, 883–889.

    Article  CAS  Google Scholar 

  12. Ranby, B.; Yang, W. T.; Tretinnikov, V.; Tokarev, V.; Xu, Y. H. Lamination of polymer films by bulk surface photografting process and properties. Chinese J. Polym. Sci.2001, 19, 123-127.

  13. Yang, W. T.; Ranby, B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J. Appl. Polym. Sci.1996, 62, 545–555.

    Article  CAS  Google Scholar 

  14. Ma, H.; Davis, R. H.; Bowman, C. N. A novel sequential photoinduced living graft polymerization. Macromolecules2000, 33, 331–335.

    Article  CAS  Google Scholar 

  15. Janorkar, A. V.; Metters, A. T.; Hirt, D. E. Modification of poly(lactic acid) films: Enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules2004, 37, 9151–9159.

    Article  CAS  Google Scholar 

  16. Ikada, E. Photo- and bio-degradable polyesters, photodegradation behaviours of aliphatic polyesters. J. Photopolym. Sci. Tech.1997, 10, 265–269.

    Article  CAS  Google Scholar 

  17. Tsuji, H.; Echizen, Y.; Nishimura, Y. Photodegradation of biodegradable polyesters: A comprehensive study on poly(Llactide) and poly(ε-caprolactone). Polym. Degrad. Stab.2006, 91, 1128–1137.

    Article  CAS  Google Scholar 

  18. Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S. Selfassembly of random copolymers. Chem. Commun.2014, 50, 13417–13432.

    Article  CAS  Google Scholar 

  19. Zhou, Y.; Liu, B.; Wang, X. Self-assembly of homopolymers through strong dipole-dipole interaction in their aqueous solutions. Polymer2016, 97, 1–10.

    Article  CAS  Google Scholar 

  20. Choucair, A.; Lavigueur, C.; Eisenberg, A. Polystyrene-poly(acrylic acid) vesicle size control using solution properties and hydrophilic block length. Langmuir2004, 20, 3894–3900.

    Article  CAS  Google Scholar 

  21. McNeill, I. C.; Sadeghi, S. M. T. Thermal-stability and degradation mechanisms of poly(acrylic acid) and its salts. I. Poly(acrylic acid). Polym. Degrad. Stab.1990, 29, 233.

    Article  CAS  Google Scholar 

  22. Chen, L.; Hu, K.; Sun, S.; Jiang, H.; Huang, D.; Zhang, K.; Pan, L.; Li, Y. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci.2018, 36, 1342–1352.

    Article  CAS  Google Scholar 

  23. Zhang, J.; Jia, J.; Kim, J. P.; Shen, H.; Yang, F.; Zhang, Q.; Xu, M.; Bi, W.; Wang, X.; Yang, J.; Wu, D. Ionic colloidal molding as a biomimetic scaffolding strategy for uniform bone tissue regeneration. Adv. Mater.2017, 29, 1605546–1605554.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (No. 21434008). We thank Professor Lei Tao and his laboratory for the GPC characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JX., Huang, YB. & Yang, WT. Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution. Chin J Polym Sci 38, 137–142 (2020). https://doi.org/10.1007/s10118-019-2308-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2308-y

Keywords

Navigation