Skip to main content
Log in

Increasing the Content of β Phase of Poly(9,9-dioctylfluorene) by Synergistically Controlling Solution Aggregation and Extending Film-forming Time

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

For poly(9,9-dioctylfuorene) (PFO), β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favors charge carrier transport. However, the highest content of β phase obtained so far is 45%. We propose to increase the content of β phase by promoting the solution aggregation of PFO molecules and extending film-forming time. For this purpose, 1,8-diiodooctane (DIO) is added to PFO o-xylene solution, which enhances the interaction of PFO chains and improves the planarity of PFO backbone, resulting in the formation of ordered aggregation. The aggregates act as nucleation centers to promote the formation of β phase. The content of β phase increases with increasing DIO concentration and reaches a platform of 39% as DIO is more than 4 vol%. Furthermore, the film is kept in a sealed environment with o-xylene atmosphere for 3 h, thus the PFO molecules have enough time to diffuse to the crystallization front and achieve disorder-order transition. As a result, the crystallinity of PFO is improved significantly and the content of β phase increases to 52%, reaching the highest value reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Q.; Chi, L.; Hai, G.; Fang, Y.; Li, X.; Xia, R.; Huang, W.; Gu, E. An easy approach to control β-phase formation in PFO films for optimized emission properties. Molecules 2017, 22, 315.

    Article  CAS  PubMed Central  Google Scholar 

  2. Wu, F. I.; Shih, P. I.; Shu, C. F.; Tung, Y. L.; Chi, Y. Highly efficient light-emitting diodes based on fluorene copolymer consisting of triarylamine units in the main chain and oxadiazole pendent groups. Macromolecules 2005, 38, 9028–9036.

    Article  CAS  Google Scholar 

  3. Peet, J.; Brocker, E.; Xu, Y.; Bazan, G. C. Controlled β phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Adv. Mater. 2008, 20, 1882–1885.

    Article  CAS  Google Scholar 

  4. Chou, K. W.; Yan, B.; Li, R.; Li, E. Q.; Zhao, K.; Anjum, D. H.; Alvarez, S.; Gassaway, R.; Biocca, A.; Thoroddsen, S. T.; Hexemer, A.; Amassian, A. Spin-cast bulk heterojunction solar cells: A dynamical investigation. Adv. Mater. 2013, 25, 1923–1929.

    Article  CAS  PubMed  Google Scholar 

  5. Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 2009, 3, 649–653.

    Article  CAS  Google Scholar 

  7. Wang, H.; Li, F.; Gao, B.; Xie, Z.; Liu, S.; Wang, C.; Hu, D.; Shen, F.; Xu, Y.; Shang, H. Doped organic crystals with high efficiency, color-tunable emission toward laser application. Cryst. Growth Des. 2009, 9, 4945–4950.

    Article  CAS  Google Scholar 

  8. Schneider, D.; Rabe, T.; Riedl, T.; Dobbertin, T.; Werner, O.; Kröger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Weimann, T. Deep blue widely tunable organic solid-state laser based on a spirobifluorene derivative. Appl. Phys. Lett. 2004, 84, 4693–4695.

    Article  CAS  Google Scholar 

  9. Lin, J. Y.; Zhu, W. S.; Liu, F.; Xie, L. H.; Zhang, L.; Xia, R.; Xing, G. C.; Huang, W. A rational molecular design of β phase polydiarylfluorenes: Synthesis, morphology, and organic lasers. Macromolecules 2014, 47, 1001–1007.

    Article  CAS  Google Scholar 

  10. Liu, B.; Lin, J.; Liu, F.; Yu, M.; Zhang, X.; Xia, R.; Yang, T.; Fang, Y.; Xie, L.; Huang, W. A highly crystalline and wide-bandgap polydiarylfluorene with β-phase conformation toward stable electroluminescence and dual amplified spontaneous emission. ACS Appl. Mater. Interfaces 2016, 8, 21648–21655.

    Article  CAS  PubMed  Google Scholar 

  11. Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Self-dopant formation in poly(9,9-di-n-octylfluorene) via a dipping method for efficient and stable pure-blue electroluminescence. Adv. Mater. 2007, 19, 2574–2579.

    Article  CAS  Google Scholar 

  12. Liang, J.; Yu, L.; Zhao, S.; Ying, L.; Liu, F.; Yang, W.; Peng, J.; Cao, Y. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology 2016, 27, 284001.

    Article  CAS  PubMed  Google Scholar 

  13. Teetsov, J.; Fox, M. A. Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes. J. Mater. Chem. 1999, 9, 2117–2122.

    Article  CAS  Google Scholar 

  14. Zhu, B.; Han, Y.; Sun, M.; Bo, Z. Water-soluble dendronized polyfluorenes with an extremely high quantum yield in water. Macromolecules 2007, 40, 4494–4500.

    Article  CAS  Google Scholar 

  15. Cho, H. J.; Jung, B. J.; Cho, N. S.; Lee, J.; Shim, H. K. Synthesis and characterization of thermally stable blue light-emitting polyfluorenes containing siloxane bridges. Macromoecules 2003, 36, 6704–6710.

    Article  CAS  Google Scholar 

  16. Wang, P. H.; Ho, M. S.; Yang, S. H.; Chen, K. B.; Hsu, C. S. Synthesis of thermal-stable and photo-crosslinkable polyfluorenes for the applications of polymer light-emitting diodes. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 516–524.

    Article  CAS  Google Scholar 

  17. Li, X.; Bai, Z.; Liu, B.; Li, T.; Lu, D. From starting formation to the saturation content of the β phase in poly(9,9-dioctylfuorene) toluene solutions. J. Phys. Chem. C 2017, 121, 14443–14450.

    Article  CAS  Google Scholar 

  18. Huang, L.; Huang, X.; Sun, G.; Gu, C.; Lu, D.; Ma, Y. Study of β phase and chains aggregation degrees in poly(9,9-dioctylfuorene) (PFO) solution. J. Phys. Chem. C 2012, 116, 7993–7999.

    Article  CAS  Google Scholar 

  19. Chen, S.; Su, A.; Su, C.; Chen, S. Crystalline forms and emission behavior of poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 2005, 38, 379–385.

    Article  CAS  Google Scholar 

  20. Bradley, D. D. C.; Grell, M.; Long, X.; Mellor, H.; Grice, A. W.; Inbasekaran, M.; Woo, E. P. Influence of aggregation on the optical properties of a polyfluorene. Proc. SPIE 1997, 3145, 254–260.

    Article  CAS  Google Scholar 

  21. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Chain geometry, solution aggregation and enhanced dichroism in the liquidcrystalline conjugated polymer poly(9,9-dioctylfuorene). Acta Polym. 1998, 49, 439–444.

    Article  CAS  Google Scholar 

  22. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. A glass-forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv. Mater. 1997, 9, 798–802.

    Article  CAS  Google Scholar 

  23. Perevedentsev, A.; Stavrinou, P. N.; Smith, P.; Bradley, D. D. C. Solution-crystallization and related phenomena in 9,9-dialkyl-fluorene polymers. II. Influence of side-chain structure. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506.

    Article  CAS  Google Scholar 

  24. Liu, B.; Lin, J. Y.; Yu, M. N.; Li, B.; Xie, L. H.; Ou, C. J.; Liu, F.; Li, T.; Lu, D.; Huang, W. Hereditary character of alkylchain length effect on β phase conformation from polydialkylfuorenes to bulky polydiarylfuorenes. J. Phys. Chem. C 2017, 121, 19087–19096.

    Article  CAS  Google Scholar 

  25. Liu, B.; Tao, L.; Hao, Z.; Ma, T.; Dan, L. Polyfluorene (PF) single-chain conformation, β conformation, and its stability and chain aggregation by side-chain length change in the solution dynamic process. J. Phys. Chem. C 2018, 122, 14814–14826.

    Article  CAS  Google Scholar 

  26. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32, 5810–5817.

    Article  CAS  Google Scholar 

  27. Yu, M. N.; Soleimaninejad, H.; Lin, J. Y.; Zuo, Z. Y.; Liu, B.; Bo, Y. F.; Bai, L. B.; Han, Y. M.; Smith, T. A.; Xu, M.; Wu, X. P.; Dunstan, D. E.; Xia, R. D.; Xie, L. H.; Bradley, D. D. C.; Huang, W. Photophysical and fluorescence anisotropic behavior of polyfluorene β-conformation films. J. Phys. Chem. Lett. 2018, 9, 364–372.

    Article  CAS  PubMed  Google Scholar 

  28. Khan, A. L.; Sreearunothai, P.; Herz, L. M.; Banach, M. J.; Köhler, A. Morphology-dependent energy transfer within polyfluorene thin films. Phys. Rev. B 2004, 69, 085201.

    Article  CAS  Google Scholar 

  29. Bai, Z.; Liu, Y.; Li, T.; Li, X.; Liu, B.; Liu, B.; Lu, D. Quantitative study on β phase heredity based on poly(9,9-dioctylfluorene) from solutions to films and the effect on hole mobility. J. Phys. Chem. C 2016, 120, 27820–27828.

    Article  CAS  Google Scholar 

  30. Yu, M. N.; Liu, B.; Lin, J. Y.; Tao, L.; Dan, L.; Feng, L.; Zhu, W. S. Nondilute 1,2-dichloroethane solution of poly(9,9-dioctylfuorene-2,7-diyl): A study on the aggregation process. Chinese J. Polym. Sci. 2016, 34, 1311–1318.

    Article  CAS  Google Scholar 

  31. Yang, H.; Qu, K.; Li, H.; Cheng, H.; Zhang, J. An in situ investigation into the formation of the solvent-induced crystalline phase of poly(9,9-dioctylfluorene) in solvent vapor annealing. Macromol. Chem. Phys. 2016, 217, 1579–1585.

    Article  CAS  Google Scholar 

  32. Cadby, A.; Lane, P.; Mellor, H.; Martin, S.; Grell, M.; Giebeler, C.; Bradley, D. D. C.; Wohlgenannt, M.; An, C.; Vardeny, Z. Film morphology and photophysics of polyfluorene. Phys. Rev. B 2000, 62, 15604.

    Article  CAS  Google Scholar 

  33. Zhang, X.; Lei, Z.; Hu, Q.; Lin, J.; Chen, Y.; Xie, L.; Lai, W.; Huang, W. Stable pure-blue polymer light-emitting devices based on β phase poly(9,9-dioctylfluorene) induced by 1,2-dichloroethane. Appl. Phys. Express 2014, 7, 101601.

    Article  CAS  Google Scholar 

  34. Bright, D. W.; Galbrecht, F.; Scherf, U.; Monkman, A. P. β phase formation in poly(9,9-di-n-decylfluorene) thin films. Macromolecules 2010, 43, 7860–7863.

    Article  CAS  Google Scholar 

  35. Li, T.; Liu, B.; Zhang, H.; Ren, J.; Bai, Z.; Li, X.; Ma, T.; Lu, D. Effect of conjugated polymer poly(9,9-dioctylfluorene) (PFO) molecular weight change on the single chains, aggregation and β phase. Polymer 2016, 103, 299–306.

    Article  CAS  Google Scholar 

  36. Li, T.; Huang, L.; Bai, Z.; Li, X.; Liu, B.; Lu, D. Study on the forming condition and mechanism of the β conformation in poly(9,9-dioctylfluorene) solution. Polymer 2016, 88, 71–78.

    Article  CAS  Google Scholar 

  37. Cheng, G.; Shi, T.; Bing, Y.; Liu, S.; Ying, L.; Wang, H.; Yang, S.; Hanif, M.; Dan, L.; Shen, F. Almost completely dedoped electrochemically deposited luminescent films exhibiting excellent LED performance. Electrochim. Acta 2009, 54, 7006–7011.

    Article  CAS  Google Scholar 

  38. Ng, M. F.; Sun, S. L.; Zhang, R. Q. A comparative study of optical properties of poly(9,9-dioctylfluorene) and poly(p-phenylenevinylene) oligomers. J. Appl. Phys. 2005, 97, 103513–103516.

    Article  CAS  Google Scholar 

  39. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 1964, 136, 864–871.

    Article  Google Scholar 

  40. Runge, E.; Gross, E. K. U. Density-functional theory for timedependent systems. Phys. Rev. Lett. 1984, 52, 997–1000.

    Article  CAS  Google Scholar 

  41. Hirata, S.; Lee, T. J.; Headgordon, M. Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene. J. Chem. Phys. 1999, 111, 8904–8912.

    Article  CAS  Google Scholar 

  42. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  43. Cao, X.; Du, Z.; Liang, C.; Zhao, K.; Li, H.; Liu, J.; Han, Y. Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution. Polymer 2017, 118, 135–142.

    Article  CAS  Google Scholar 

  44. Liang, C.; Zhao, K.; Cao, X.; Liu, J.; Yu, X.; Han, Y. Nanowires of conjugated polymer prepared by tuning the interaction between the solvent and polymer. Polymer 2018, 149, 23–29.

    Article  CAS  Google Scholar 

  45. Chen, L.; Zhao, K.; Cao, X.; Liu, J.; Yu, X.; Han, Y. Diketopyrrolopyrrole-based polymer fibrils formation by changing molecular conformation during film formation. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1079–1086.

    Article  CAS  Google Scholar 

  46. Liang, C.; Chi, S.; Zhao, K.; Liu, J.; Yu, X.; Han, Y. Aligned films of the DPP-based conjugated polymer by solvent vapor enhanced drop casting. Polymer 2016, 104, 123–129.

    Article  CAS  Google Scholar 

  47. Cao, X.; Chen, L.; Zhao, K.; Liu, J.; Han, Y. Diketopyrrolopyrrole-based polymer nanowires: Control of chain conformation and nucleation. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 833–841.

    Article  CAS  Google Scholar 

  48. Xu, Y.; Liu, J.; Wang, H.; Yu, X.; Xing, R.; Han, Y. Formation of parallel aligned nano-fibrils of a donor-acceptor conjugated copolymer via controlling J-aggregates and post treatment. Soft Matter 2013, 9, 9849–9856.

    Article  CAS  Google Scholar 

  49. Wang, H. Y.; Liu, J. G.; Xu, Y. Z.; Yu, X. H.; Xu, R. B.; Han, Y. C. Ordered fibrillar morphology of donor-acceptor conjugated copolymers at multiple scales via blending with flexible polymers and solvent vapor annealing: Insight into photophysics and mechanism. Phys. Chem. Chem. Phys. 2014, 16, 1441–1450.

    Article  CAS  PubMed  Google Scholar 

  50. Xu, Y.; Liu, J.; Wang, H.; Zheng, L.; Han, Y. Formation of parallel aligned nano-fibrils of poly(3,3″′-didodecylquaterthiophene) induced by the unimer coils in solution. RSC Adv. 2013, 3, 12069–12074.

    Article  CAS  Google Scholar 

  51. Wang, H. Y.; Liu, J. G.; Xu, Y. Z.; Han, Y. C. Fibrillar mor-phology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: Effects of conformational transition and conjugate length. J. Phys. Chem. B 2013, 117, 5996–6006.

    Article  CAS  PubMed  Google Scholar 

  52. Bright, D. W.; Dias, F. B.; Galbrecht, F.; Scherf, U.; Monkman, A. P. The influence of alkyl-chain length on β-phase formation in polyfluorenes. Adv. Funct. Mater. 2009, 19, 67–73.

    Article  CAS  Google Scholar 

  53. Dias, F. B.; Morgado, J.; Macanita, A. L.; da Costa, F. P.; Burrows, H. D.; Monkman, A. P. Kinetics and thermodynamics of poly(9,9-dioctylfluorene) β phase formation in dilute solution. Macromolecules 2006, 39, 5854–5864.

    Article  CAS  Google Scholar 

  54. Knaapila, M.; Bright, D. W.; Stepanyan, R.; Torkkeli, M.; Almásy, L.; Schweins, R.; Vainio, U.; Preis, E.; Galbrecht, F.; Scherf, U. Network structure of polyfluorene sheets as a function of alkyl side chain length. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2011, 83, 051803.

    Article  CAS  Google Scholar 

  55. Lin, Z. Q.; Shi, N. E.; Li, Y. B.; Qiu, D.; Zhang, L.; Lin, J. Y.; Zhao, J. F.; Wang, C.; Xie, L. H.; Huang, W. Preparation and characterization of polyfluorene-based supramolecular π-conjugated polymer gels. J. Phys. Chem. C 2011, 115, 4418–4424.

    Article  CAS  Google Scholar 

  56. Ariu, M.; Sims, M.; Rahn, M. D.; Hill, J.; Fox, A. M.; Lidzey, D. G.; Oda, M.; Cabanillas-Gonzalez, J.; Bradley, D. D. C. Exciton migration in β phase poly(9,9-dioctylfluorene). Phys. Rev. B 2003, 67, 195333.

    Article  CAS  Google Scholar 

  57. Montilla, F.; Ruseckas, A.; Samuel, I. D. W. Exciton-polaron interactions in polyfluorene films with β phase. J. Phys. Chem. C 2018, 122, 9766–9772.

    Article  CAS  Google Scholar 

  58. Ling, H.; Lin, J.; Yi, M.; Liu, B.; Li, W.; Lin, Z.; Xie, L.; Bao, Y.; Guo, F.; Huang, W. Synergistic effects of self-doped nanostructures as charge trapping elements in organic field effect transistor memory. ACS Appl. Mater. Interfaces 2016, 8, 18969–18977.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, X.; Hu, Q.; Lin, J.; Lei, Z.; Guo, X.; Xie, L.; Lai, W.; Huang, W. Efficient and stable deep blue polymer light-emitting devices based on β phase poly(9,9-dioctylfluorene). Appl. Phys. Lett. 2013, 103, 153301.

    Article  CAS  Google Scholar 

  60. Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Morphology and structure of the β phase crystals of monodisperse polyfluorenes. Macromolecules 2013, 46, 3025–3030.

    Article  CAS  Google Scholar 

  61. Chen, S. H.; Su, A. C.; Chen, S. A. Noncrystalline phases in poly(9,9-di-n-octyl-2,7-fluorene). J. Phys. Chem. B 2005, 109, 10067.

    Article  CAS  PubMed  Google Scholar 

  62. Chen, S. H.; Chou, H. L.; Su, A. C. Molecular packing in crystalline poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 2004, 37, 6833–6838.

    Article  CAS  Google Scholar 

  63. Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Control of crystal morphology in monodisperse polyfluorenes by solvent and molecular weight. J. Phys. Chem. B 2013, 117, 8880–8886.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51890871, 91833306, and 51573185), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Gang Liu or Yan-Chun Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YD., Zhang, Q., Yu, XH. et al. Increasing the Content of β Phase of Poly(9,9-dioctylfluorene) by Synergistically Controlling Solution Aggregation and Extending Film-forming Time. Chin J Polym Sci 37, 664–673 (2019). https://doi.org/10.1007/s10118-019-2259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2259-3

Keywords

Navigation