Skip to main content
Log in

Establishment of Constitutive Model of Silicone Rubber Foams Based on Statistical Theory of Rubber Elasticity

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a constitutive model based on microscopic physical mechanism of silicone rubber foams was established. A theoretical statistical model of rubber elasticity considering the effect of dangling chains was modified to build this model. When a strain amplification factor (X) was introduced, the theoretical model could fit the tensile stress-strain data of mono- and bi-modal foam matrix well (Adj. R-Square = 0.9989, 0.9983). Parameters related to the polymer network, namely, average molecular weight (Mc) and volume fraction (ϕ) of chain segments between adjacent cross-linking points (network strands), were calculated by probabilistic method from the number-average molecular weight (Mn), vinyl content (wVi) of the primary polysiloxanes and percent conversion (q) of vinyl groups. The primary and infinite strain amplification factors (X0, X) and decay exponent (z), introduced by X and related to the nanoparticles, were obtained by fitting. Inspired by the fact that the actual strain of matrix was lower than that of the foams’, we introduced another item, strain hysteresis item (H, related with the foam porosity and cell structure), into the statistical model as well. With the same above values of Mc, ϕ, X0 and X, the model could also fit the compressive stress-strain data of mono- and bi-modal foams well (Adj. R-Square = 0.9948, 0.9985). Interestingly, the strain hysteresis items of the mono- and bi-modal foams almost completely coincided under all experimental strains, which may be attributed to the almost equal porosity and similar cell structure of the two foams. This constitutive model may connect the macroscopic stress-strain behaviour to the parameters of microscopic molecular structures, promisingly providing a basis for the performance improvement and optimization of silicone rubber foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song, L.; Lu, A.; Feng, P.; Lu, Z. Preparation of silicone rubber foam using supercritical carbon dioxide. Mater. Lett. 2014, 121, 126–128

    Article  CAS  Google Scholar 

  2. Chen, H. B.; Liu, B.; Huang, W.; Wu, W. H. Gamma radiation induced effects of compressed silicone foam. Polym. Degrad. Stab. 2015, 114, 89–93

    Article  CAS  Google Scholar 

  3. Kumar, A.; Mollah, A. A.; Keshri, A. K.; Kumar, M.; Singh, K.; Rallabhandi, K. D. V. S.; Seelaboyina, R. Development of macroporous silicone rubber for acoustic applications. Ind. Eng. Chem. Res. 2016, 55(32), 8751–8760

    Article  CAS  Google Scholar 

  4. Liao, X.; Xu, H.; Li, S.; Zhou, C.; Li, G.; Park, C. B. The effects of viscoelastic properties on the cellular morphology of silicone rubber foams generated by supercritical carbon dioxide. RSC Adv. 2015, 5(129), 106981–106988

    Article  CAS  Google Scholar 

  5. Liu, P.; Liu, D.; Zou, H.; Fan, P.; Xu, W. Structure and properties of closed-cell foam prepared from irradiation crosslinked silicone rubber. J. Appl. Polym. Sci. 2009, 113(6), 3590–3595

    Article  CAS  Google Scholar 

  6. Yang, Q.; Yu, H.; Song, L.; Lei, Y.; Zhang, F.; Lu, A.; Liu, T.; Luo, S. Solid-state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide. J. Appl. Polym. Sci. 2017, 134(20), 44807

    Article  CAS  Google Scholar 

  7. Labouriau, A.; Robison, T.; Meincke, L.; Wrobleski, D.; Taylor, D.; Gill, J. Aging mechanisms in RTV polysiloxane foams. Polym. Degrad. Stabil. 2015, 121, 60–68

    Article  CAS  Google Scholar 

  8. Rusch, K. C. Energy-absorbing characteristics of foamed polymers. J. Appl. Polym. Sci. 1970, 14(6), 1433–1447

    Article  CAS  Google Scholar 

  9. Avalle, M.; Belingardi, G.; Ibba, A. Mechanical models of cellular solids: Parameters identification from experimental tests. Int. J. Impact. Eng. 2007, 34(1), 3–27

    Article  Google Scholar 

  10. Gibson, L. J. Modelling the mechanical behavior of cellular materials. Mat. Sci. Eng A-Struct. 1989, 110, 1–36

    Article  Google Scholar 

  11. Itskov, M.; Knyazeva, A. A rubber elasticity and softening model based on chain length statistics. Int. J. Solids. Struct. 2016, 80, 512–519

    Article  Google Scholar 

  12. Schlögl, S.; Trutschel, M. L.; Chassé, W.; Riess, G.; Saalwächter, K. Correction to entanglement effects in elastomers: macroscopic vs microscopic properties. Macromolecules 2015, 48(8), 2855–2855

    Article  CAS  Google Scholar 

  13. Guth, E.; James, H. M. Elastic and thermoelastic properties of rubber like materials. Ind. Eng. Chem. Res. 1941, 33(5), 624–629

    Article  CAS  Google Scholar 

  14. Rubinstein, M.; Panyukov, S. Elasticity of polymer networks. Macromolecules 2002, 35(17), 6670–6686

    Article  CAS  Google Scholar 

  15. Vega, D. A.; Villar, M. A.; Alessandrini, J. L.; Vallés, E. M. Terminal relaxation of model poly(dimethylsiloxane) networks with pendant chains. Macromolecules 2001, 34(13), 4591–4596

    Article  CAS  Google Scholar 

  16. Tsenoglou, C. Rubber elasticity of cross-linked networks with trapped entanglements and dangling chains. Macromolecules 1989, 22(1), 284–289

    Article  CAS  Google Scholar 

  17. Lorenz, H.; Klüppel, M.; Heinrich, G. Microstructure-based modelling and FE implementation of filler-induced stress softening and hysteresis of reinforced rubbers. ZAMM-Z. Angew. Math. Me. 2012, 92(8), 608–631

    Article  Google Scholar 

  18. Klüppel, M.; Schramm, J. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol. Theor. Simul. 2000, 9(9), 742–754

    Article  Google Scholar 

  19. Marrucci, G. A mechanical model for rubbers containing entanglements. Rheo. Acta 1979, 18(2), 193–198

    Article  CAS  Google Scholar 

  20. Curro, J. G.; Pincus, P. A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit. Macromolecules 1983, 16(4), 559–562

    Article  CAS  Google Scholar 

  21. Xu, Q.; Pang, M.; Zhu, L.; Zhang, Y.; Feng, S. Mechanical properties of silicone rubber composed of diverse vinyl content silicone gums blending. Mater. Design 2010, 31(9), 4083–4087

    Article  CAS  Google Scholar 

  22. Urayama, K. Network topology-mechanical properties relationships of model elastomers. Polym. J. 2008, 40(8), 669–678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51473151 and 51703210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, CS., Lu, A., Sun, SM. et al. Establishment of Constitutive Model of Silicone Rubber Foams Based on Statistical Theory of Rubber Elasticity. Chin J Polym Sci 36, 1077–1083 (2018). https://doi.org/10.1007/s10118-018-2125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2125-8

Keywords

Navigation