Skip to main content
Log in

Kinetics Analysis on the Polycondensation Process of Poly(p-phenylene terephthalamide): Experimental Verification and Molecular Simulation

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The conventional low-temperature method of solution polycondensation was developed to realize the reaction of p-phenylenediamin and terephthaloyl chloride for the preparation of poly(p-phenylene terephthalamide) (PPTA). Some main factors influencing this process were investigated to determine the optimum condition for high molecular weight. Experiment showed significant slowing of the reaction and gradual deviation of second-order reaction kinetics due to diffusion control. These phenomena were studied theoretically via dynamic Monte Carlo simulation. A concise expression, n ~ c0-0.88·t0.37, was proposed to describe the diffusioncontrolled polycondensation process as a function of the monomer concentration and reaction time. The theoretical results provided a good description of diffusion-effected kinetics for the polycondensation process of PPTA, and demonstrated good agreement with the experimental data. Some differences of scaling relations between model and experiment results were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao, Y.; Waddon, A.; Farris, R. Structure-property relation in poly(p-phenylene terephthalamide) (PPTA) fibers. Polymer 2001, 42(13), 5937–5946.

    Article  CAS  Google Scholar 

  2. Mark, H.; Atlas, S.; Ogata, N. Aromatic polyamide. J. Polym. Sci. 1962, 61(172), 49–53.

    Article  Google Scholar 

  3. Anagnostopoulos, G.; Parthenios, J.; Galiotis, C. Thermal stress development in fibrous composites. Mater. Lett. 2008, 62(3), 341–345.

    Article  CAS  Google Scholar 

  4. Knijnenberg, A.; Bos, J.; Dingemans, T. J. The synthesis and characterisation of reactive poly(p-phenylene terephthalamide)s: a route towards compression stable aramid fibres. Polymer 2010, 51(9), 1887–1897.

    Article  CAS  Google Scholar 

  5. Rao, Y.; Waddon, A.; Farris, R. The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers. Polymer 2001, 42(13), 5925–5935.

    Article  CAS  Google Scholar 

  6. Du, S.; Wang, W.; Yan, Y.; Zhang, J.; Tian, M.; Zhang, L.; Wan, X. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups. Chem. Commun. 2014, 50(69), 9929–9931.

    Article  CAS  Google Scholar 

  7. Du, S.; Zhang, J.; Guan, Y.; Wan, X. Sequence effects on properties of the poly(p-phenylene terephthalamide)-based macroinitiators and their comb-like copolymers grafted by polystyrene side chains. Aust. J. Chem. 2014, 67(1), 39–48.

    Article  CAS  Google Scholar 

  8. Schwartz, P. A review of recent experimental results concerning the strength and time dependent behavior of fibrous poly(paraphenylene terephthalamide). Polym. Eng. Sci. 1987, 27(11), 842–847.

    Article  CAS  Google Scholar 

  9. Perepelkin, K. E.; Machalaba, N. N. Recent achievements in structure ordering and control of properties of para-aramide fibres. Mol. Cryst. Liq. Cryst. 2000, 353(1), 275–286.

    Article  CAS  Google Scholar 

  10. Sun, L.; Xu, J.; Luo, W.; Guo, C.; Tuo, X.; Wang, X. Investigation on the preparation of high molecular weight poly(p-phenylene terephthalamide) using CaH2 as acid absorbent. Acta Polymerica Sinica (in Chinese) 2012, (1), 70–74.

    Article  Google Scholar 

  11. Wang, S.; Liu, H.; Xiao, R. Determination of condensationpolymerization thermal effect of poly(paraphenylenetere-phalamide). Journal of DongHua University (in Chinese). 1984, 1, 41–46.

    Google Scholar 

  12. Chae, H. G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100(1), 791–802.

    Article  CAS  Google Scholar 

  13. Flory, P. J., Principles of polymer chemistry, Cornell University Press, New York, 1953, p. 317.

    Google Scholar 

  14. Cotts, D. B.; Berry, G. C. Polymerization kinetics of rigid rodlike molecules: polycondensation of poly([benzo (1,2-d:5,4-d') bisoxazole-2,6-diyl]-1,4-phenylene). Macromolecyles 1981, 14(4), 930–934

    Article  CAS  Google Scholar 

  15. Agarwal, U.; Khakhar, D. Enhancement of polymerization rates for rigid rod-like molecules by shearing. Nature 1992, 360, 53–55.

    Article  CAS  Google Scholar 

  16. Agarwal, U.; Khakhar, D. Diffusion-limited polymerization of rigid rodlike molecules: dilute solutions. J. Chem. Phys. 1992, 96(9), 7125–7134.

    Article  CAS  Google Scholar 

  17. Agarwal, U.; Khakhar, D. Shear flow induced orientation development during homogeneous solution polymerization of rigid rodlike molecules. Macromolecules 1993, 26(15), 3960–3965.

    Article  CAS  Google Scholar 

  18. Agarwal, U.; Khakhar, D. Simulation of diffusion-limited step-growth polymerization in 2D: effect of shear flow and chain rigidity. J. Chem. Phys. 1993, 99(4), 3067–3074.

    Article  CAS  Google Scholar 

  19. Agarwal, U.; Khakhar, D. Diffusion-limited polymerization of rigid rodlike molecules: semidilute solutions. J. Chem. Phys. 1993, 99(2), 1382–1392.

    Article  CAS  Google Scholar 

  20. Arpin, M.; Strazielle, C. Characterization and conformation of aromatic polyamides: poly(1,4-phenylene terephthalamide) and poly(p-benzamide) in sulphuric acid. Polymer 1977, 18(6), 591–598.

    Article  CAS  Google Scholar 

  21. Bair, T.; Morgan, P.; Killian, F. Poly(1,4-phenyleneterephthalamides). polymerization and novel liquid-crystalline solutions. Macromolecules 1977, 10(6), 1396–1400.

    CAS  Google Scholar 

  22. Gupta, J. S.; Agge, A.; Khakhar, D. Polymerization kinetics of rodlike molecules under quiescent conditions. AlChE J. 2001, 47(1), 177–186.

    Article  CAS  Google Scholar 

  23. Bao, J. S.; You, A. J.; Zhang, S. Q.; Zhang, S. A.; Hu, C. Studies on the semirigid chain polyamide-poly(1,4-phenyleneterephthalamide). J. Appl. Polym. Sci. 1981, 26(4), 1211–1220.

    Article  CAS  Google Scholar 

  24. Doi, M.; Edwards, S. F., The theory of polymer dynamics, Oxford University Press, New York, 1988, p. 295.

    Google Scholar 

  25. Tracy, M.; Pecora, R. Dynamics of rigid and semirigid rodlike polymers. Annu. Rev. Phys. Chem. 1992, 43(1), 525–557.

    Article  CAS  Google Scholar 

  26. Doi, M. Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci., Part B 1981, 19, 229–243.

    CAS  Google Scholar 

  27. Teraoka, I.; Hayakawa, R. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation. I. transverse diffusion. J. Chem. Phys. 1988, 89(11), 6989–6995.

    Article  CAS  Google Scholar 

  28. Teraoka, I.; Hayakawa, R. Theory of dynamics of entangled rod-like polymers by use of a mean-field green function formulation. II. rotational diffusion. J. Chem. Phys. 1989, 91(4), 2643–2648.

    CAS  Google Scholar 

  29. Agge, A.; Jain, S.; Khakhar, D. Acceleration of the polymerization of rodlike molecules by flow. J. Am. Chem. Soc. 2000, 122(44), 10910–10913.

    Article  CAS  Google Scholar 

  30. Jain, S.; Agge, A.; Khakhar, D. Flow enhanced diffusion-limited polymerization of rodlike molecules. J. Chem. Phys. 2001, 114(1), 553–560.

    Article  CAS  Google Scholar 

  31. Zhang, R.; Kong, H. J.; Zhong, H. P.; Liu, J.; Zhou, J. J.; Teng, C. Q.; Ma, Y.; Yu, M. H. N-Alkyl PPTA: preparation and characterization. Adv. Mater. Res. 2012, 554, 105–109.

    Google Scholar 

  32. Fitzer, E.; Müller, D. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon 1975, 13(1), 63–69.

    Article  CAS  Google Scholar 

  33. Liu, J.; Ma, Y.; Wu, R.; Yu, M. Molecular simulation of diffusion-controlled kinetics in stepwise polymerization. Polymer 2016, 97, 335–345.

    Article  CAS  Google Scholar 

  34. Atkins, P.; Paula, D. J. Physical Chemistry, W. H. Freeman & Company, New York, 2006, p. 807.

    Google Scholar 

  35. Wang, S.; Liu, H.; Xiao, R. Determination of condensationpolymerization thermal effect of poly(paraphenyleneterephalamide). Journal of DongHua. University 1984, 1, 41–46.

    Google Scholar 

  36. Northolt, M. X-ray diffraction study of poly(p-phenylene terephthalamide) fibres. Eur. Polym. J. 1974, 10(9), 799–804.

    Article  CAS  Google Scholar 

  37. Northolt, M.; van Aartsen, J. On the crystal and molecular structure of poly-(p-phenylene terephthalamide). J. Polym. Sci., Part C: Polym. Lett. 1973, 11(5), 333–337.

    CAS  Google Scholar 

  38. Bu, Z.; Russo, P. S.; Tipton, D. L.; Negulescu, I. I. Self-diffusion of rodlike polymers in isotropic solutions. Macromolecules 1994, 27(23), 6871–6882.

    Article  CAS  Google Scholar 

  39. Wang, P.; Wang, K.; Zhang, J. Non-aqueous suspension polycondensation in NMP-CaCl2/paraffin system-A new approach for the preparation of poly(p-phenylene terephthalamide). Chinese J. Polym. Sci. 2015, 33(4), 564–575.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21204011, 51603120 and 21404023), the National Basic Research Program of the China 973 Program (No. 2011CB606101), Fundamental Research Funds for the Central Universities, Innovation Program of Shanghai Science and Technology Commission (No. 14521100605) and the Innovation Program of Shanghai Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ma or Mu-Huo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Kong, HJ., Ma, Y. et al. Kinetics Analysis on the Polycondensation Process of Poly(p-phenylene terephthalamide): Experimental Verification and Molecular Simulation. Chin J Polym Sci 36, 675–682 (2018). https://doi.org/10.1007/s10118-018-2024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2024-z

Keywords

Navigation