Skip to main content
Log in

Multi-walled carbon nanotubes as a ligand in nickel α-diimine based ethylene polymerization

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two novel heterogeneous nickel α-diimine based polymerization catalysts, containing MWCNT as the main ligand, were synthesized by novel in situ catalyst preparation technique. The in situ synthesis was performed by covalent attachment of the acenaphthenic ligand core to amine functionalized MWCNT ligand arms through diimine bonding and further nickel dibromide chelation. The prepared catalysts were fully characterized and their structures and supporting efficiencies were determined. Single or double introduction of the MWCNTs through their ends or sidewall(s) in the catalytic system, as a ligand, influenced the catalytic performance, microstructure and morphology of obtained polyethylenes. MWCNT sidewall bonding to para-aryl position of the tetramethylphenyl moiety performed as more electron-donating ligand than MWCNT ends linked to the imine bond and protected the catalytic system to retain its activity. This character resulted in the maintenance of the resulting polymer topology at elevated temperatures so that the catalytic activity and the obtained polymer melting points remained around 110 g PE∙mmol−1 Ni∙h−1 and 123 °C in all polymerization temperatures respectively. In polymerization trials, molecular weight fall against temperature was not as sharp as what had been observed in sequentially prepared catalysts insofar as the molecular weight of resultant polymer at 60 °C reached to 310000 g∙mol−1 which was close to the highest value had been reported at 30 °C for sequentially prepared catalysts. TEM observations showed the presence of the stopped-growth polymer chains due to geometrical constrains or ligand debonding for both catalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ittel, S.D., Johnson, L.K. and Brookhart, M., Chem. Rev., 2000, 100: 1169

    Article  CAS  Google Scholar 

  2. Gibson, V.C. and Spitzmesser, S.K., Chem. Rev., 2003, 103: 283

    Article  CAS  Google Scholar 

  3. Johnson, L.K., Killian, C.M. and Brookhart, M., J. Am. Chem. Soc., 1995, 117: 6414

    Article  CAS  Google Scholar 

  4. Johnson, L.K., Mecking, S. and Brookhart, M., J. Am. Chem. Soc., 1996, 118: 267

    Article  CAS  Google Scholar 

  5. Mecking, S., Johnson, L.K., Wang, L. and Brookhart, M., J. Am. Chem. Soc., 1998, 120(5): 888

    Article  CAS  Google Scholar 

  6. Guan, Z., Cotts, P.M., McCord, E.F. and MLain, S.J., Science, 1999, 283: 2059

    Article  CAS  Google Scholar 

  7. Cotts, P.M., Guan, Z., McCord, E. and McLain, S., Macromolecules, 2000, 33: 6945

    Article  CAS  Google Scholar 

  8. Meinhard, D., Wegner, M., Kipiani, G., Hearley, A., Reuter, P., Fischer, S., Marti, O.R. and Rieger, B., J. Am. Chem. Soc., 2007, 129(29): 9182

    Article  CAS  Google Scholar 

  9. Galland, G.B., De Souza, R.F., Mauler, R.S. and Nunes, F.F., Macromolecules, 1999, 32(5): 1620

    Article  CAS  Google Scholar 

  10. Schmid, M., Eberhardt, R., Klinga, M., Leskela, M. and Rieger, B., Organometallics, 2001, 20(11): 2321

    Article  CAS  Google Scholar 

  11. Popeny, C.S. and Guan, Z.B., Macromolecules, 2010, 43(9): 4091

    Article  Google Scholar 

  12. Popeny, C.S. and Guan, Z.B., Organometallics, 2005, 24(6): 1145

    Article  Google Scholar 

  13. Vatankhah-Varnoosfaderani, M. and Pourmahdian, S., Iran Polym. J., 2011, 20(11): 897

    CAS  Google Scholar 

  14. Guo, C., Zhang, D. and Jin, G.X., Chin. Sci. Bull., 2004, 49: 249

    Article  CAS  Google Scholar 

  15. Kurokawa, H., Matsuda, M., Fujii, K., Ishihama, Y., Sakuragi, T. and Miura, H., Chem. Lett., 2007, 36: 1004

    Article  CAS  Google Scholar 

  16. Kurokawa, H., Matsuda, M., Fujii, K., Ishihama, Y., Sakuragi, T. and Miura, H., Catal. Commun., 2008, 10(2): 183

    Article  Google Scholar 

  17. Kaul, F.A., Puchta, G.T., Schneider, H., Bielert, F. and Mihalios, D., Organometallics, 2002, 21(1): 74

    Article  CAS  Google Scholar 

  18. Jiang, H., Lu, J. and Xiao, J., E-Polymers, 2011, 11(1): 454

    Article  Google Scholar 

  19. Choi, Y., “Polymerization of ethylene with supported early and late transitional metal catalysts”, Thesis, University of Waterloo, 2011

    Google Scholar 

  20. Park, S., Yoon, S.W., Choi, H., Lee, J.S., Cho, W.K., Kim, J. and Park, H.J., Chem. Mater., 2008, 20(14): 4588

    Article  CAS  Google Scholar 

  21. Wu, W., Jiang, Y., Wu, H., Luo, M.J., Ning, Y.N. and Mao, G.L., Chin. Sci. Bull., 2013, 58(15): 1741

    Article  CAS  Google Scholar 

  22. Baier, M.C., Zuideveld, M.A. and Mecking, S., Angew. Chem. Int. Ed. Engl., 2014, 53(37): 9722

    Article  CAS  Google Scholar 

  23. Zhang, L., Yue, E., Liu, B., Serp, P., Redshaw, C., Sun, W.H. and Durand, J., Catal. Commun., 2014, 43: 227

    Article  CAS  Google Scholar 

  24. Talebnezhad, S. and Pourmahdian, S., Colloid. Polym. Sci., 2014, 293(3): 721

    Article  Google Scholar 

  25. Schaetz, A., Zeltner, M. and Stark, W.J., ACS Catal., 2012, 2(6): 1267

    Article  CAS  Google Scholar 

  26. Kaminsky, W. and Funck, A., Compos. Sci. Tenchnol., 2007, 67(5): 906

    Article  Google Scholar 

  27. Kovalchuk, A.A., Shevchenco, V.G., Shchegolikhin, A.N., Nedorezova, P.M. and Aladyshev, A.M., J. Mater. Sci., 2008, 43(22): 7132

    Article  CAS  Google Scholar 

  28. Kim, J., Seo, Y., Hong, S.M. and Choi, H.J., Int. J. Mater. Form., 2009, 2(1): 873

    Article  Google Scholar 

  29. Lee, S., Shin, J.Y. and Lee, S.G., Tetrahedron. Lett., 2013, 54(7): 684

    Article  CAS  Google Scholar 

  30. Amoli, B.M., Ramazani, S.A.A. and Izadi, H., J. Appl. Polym. Sci., 2012, 125(S1): E453

    Article  CAS  Google Scholar 

  31. Wolf, A., Buchholz, S., Volker, M., Mleczko, L. and Rudolf, R., 2008, U.S. Pat., 20,080,293,853

    Google Scholar 

  32. Grondein, A. and Belanger, D., Fuel, 2011, 90(8): 2684

    Article  CAS  Google Scholar 

  33. Khazaei, A., Soltani Rad, M.N., Kiani Borazjani, M., Saednia, Sh., Kiani Borazjani, M. and Soudbar, D., Synlett., 2011, 15: 2145

    Article  Google Scholar 

  34. Prodana, H., Ionita, D., Bojin, D. and Demetrescu, I., J. Sustain. Ener., 2012, 3(1): 62

    Google Scholar 

  35. Netalkar, S.P., Budagumpi, S., Abdallah, H.H., Netalkar, P.P. and Revankar, V.K., J. Mol. Struct., 2014, 1075: 559

    Article  CAS  Google Scholar 

  36. Gates, D.P., Svejda, S.A., Onate, E., Killan, C.M., Jonhson, L.K., White, P.S. and Brookhart, M., Macromolecules, 2000, 33: 2320

    Article  CAS  Google Scholar 

  37. Caruthers, J.M., Manz, T.A., Sharma, S., Phomphrai, K., Thomson, K.T., Delgass, W.N. and Abu-Omar, M., Organometallics, 2012, 31(2): 602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Pourmahdian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebnezhad, S., Pourmahdian, S. Multi-walled carbon nanotubes as a ligand in nickel α-diimine based ethylene polymerization. Chin J Polym Sci 33, 1389–1403 (2015). https://doi.org/10.1007/s10118-015-1696-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1696-x

Keywords

Navigation