Skip to main content
Log in

Fractional square functions and potential spaces, II

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we study fractional square functions associated with the Poisson semigroup for Schrödinger operators. We characterize the potential spaces in the Schrödinger setting by using vertical, area and g *λ fractional square functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auscher, P.: On necessary and sufficient conditions for L p-estimates of Riesz transforms associated to elliptic operators on Rn and related estimates. Mem. Amer. Math. Soc., 186(871), 2007

  2. Auscher, P., Ben Ali, B.: Maximal inequalities and Riesz transform estimates on Lp spaces for Schrödinger operators with nonnegative potentials. Ann. Inst. Fourier (Grenoble), 57(6), 1975–2013 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bongioanni, B., Harboure, E., Salinas, O.: Riesz transforms related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl., 357(1), 115–131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dziubanski, J.: Spectral multipliers for Hardy spaces associated with Schrödinger operators with polynomial potentials. Bull. Lond. Math. Soc., 32, 571–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dziubanski, J., Garrigós, G., Martínez, T., et al.: BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z., 249(2), 329–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dziubanski, J., Glowacki, P.: Sobolev spaces related to Schrödinger operators with polynomial potentials. Math. Z., 262(4), 881–894 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dziubanski, J., Zienkiewicz, J.: Hardy space H1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality. Rev. Mat. Iberoamericana, 15(2), 279–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Z., Wang, S.: Littlewood–Paley’s g-function on Herz-type spaces. Acta Math. Sin., Chin. Series, 43, 359–366 (2000)

    MATH  Google Scholar 

  9. Mazya, V. G.: Sobolev Spaces, Springer Verlag, Berlin, 1985

    Google Scholar 

  10. Meda, S.: A general mutiplier theorem. Proc. Amer. Math. Soc., 110(3), 639–647 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Le Merdy, C.: On square functions associated to sectorial operators. Bull. Soc. Math. France, 132(1), 137–156 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Rubio de Francia, J. L., Ruiz, F. J., Torrea, J. L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math., 62(1), 7–48 (1986)

    Article  MATH  Google Scholar 

  13. Segovia, C., Wheeden, R. L.: On certain fractional area integrals. J. Math. Mech., 19, 247–262 (1969/1970)

  14. Shen, Z.: L p estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble), 45(2), 513–546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen, Z.: The spectrum of Schrödinger operators with positive potentials in Riemannian manifolds. Proc. Amer. Math. Soc., 131(11), 3447–3456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sikora, A.: Sharp pointwise estimates on heat kernels. Quart. J. Math. Oxford Ser. (2), 47(187), 371–382 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Simon, B.: Brownian motion, Lp properties of Schrödinger operators and the localization of binding. J. Funct. Anal., 35(2), 215–229 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simon, B.: Schrödinger semigroups. Bull. Amer. Math. Soc., 7(3), 447–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stein, E. M.: Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970

    MATH  Google Scholar 

  20. Torchinsky, A.: Real-variable methods in harmonic analysis. In: Pure and Applied Mathematics, vol. 123, Academic Press Inc., Orlando, FL, 1986

  21. Wang, S.: Some properties of Littlewood–Paley g-function. Sci. Sinica Ser. A, 28(3), 252–262 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Torrea, J. L., Zhang, C.: Fractional vector-valued Littlewood–Paley-Stein theory for semigroups. Proc. Roy. Soc. Edinburgh, 144A, 637–667 (2014)

    Article  MathSciNet  Google Scholar 

  23. Xue, Q. Y., Ding, Y., Yabuta, K.: Parabolic Littlewood–Paley g-function with rough kernel. Acta Math. Sin., Engl. Series, 24, 2049–2060 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yao, K., Su, W. Y., Zhou, S. P.: The fractional derivatives of a fractal function. Acta Math. Sin., Engl. Series, 22, 719–722 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Betancor.

Additional information

The first three authors are supported by MTM2013-44357-P; the last author is partially supported by MTM2011-28149-C02-01

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betancor, J.J., Fariña, J.C., Rodríguez-Mesa, L. et al. Fractional square functions and potential spaces, II. Acta. Math. Sin.-English Ser. 31, 1759–1774 (2015). https://doi.org/10.1007/s10114-015-4046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-015-4046-6

Keywords

MR(2010) Subject Classification

Navigation