Skip to main content
Log in

Existence of Positive Solutions to Fourth Order Quasilinear Boundary Value Problems

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

In this paper, we generalize the fixed point theorem of cone expansion and compression of norm type to the theorem of functional type. As an application, the existence of positive solutions for some fourth–order beam equation boundary value problems is obtained. The emphasis is put on that the nonlinear term is dependent on all lower order derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth–order boundary value problems. J. Math. Anal. Appl., 116, 415–426 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coster, C. D., Fabry, C., Munyamarere, F.: Nonresonance conditions for fourth–order nonlinear boundary value problems. Internat. J. Math. Sci., 17, 725–740 (1994)

    Article  MATH  Google Scholar 

  3. Del Pino, M. A., Manasevich, R. F.: Existence for a fourth–order boundary value problem under a two parameter nonresonance condition. Proc. Amer. Math. Soc., 112, 81–86 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agarwal, R. P.: On fourth–order boundary value problems arising in beam analysis. Diff. Inte. Eqns., 2, 91–110 (1989)

    MATH  Google Scholar 

  5. Agarwal, R. P., O’Regan, D., Wong, P. J. Y.: Positive Solutions of Differential, Difference, and Integral Equations, Kluwer Academic Publishers, Boston, 1999

  6. Bai, Z. B.: The method of lower and upper solutions for a bending of an elastic beam equation. J. Math. Anal. Appl., 248, 195–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cabada, A.: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems. J. Math. Anal. Appl., 185, 302–320 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coster, C. D., Sanchez, L.: Upper and lower solutions, Ambrosetti–Prodi problem and positive solutions for fourth–order. Riv. Math. Pura. Appl., 14, 1129–1138 (1994)

    Google Scholar 

  9. Ehme, J., Eloe, P. W., Henderson, J.: Upper and lower solution methods for fully nonlinear boundary value problems. J. Differential Equations, 180, 51–64 (2001)

    Article  MathSciNet  Google Scholar 

  10. Ma, R. Y., Zhang, J. H., Fu, S. M.: The method of lower and upper solutions for fourth–order two–point boundary value problems. J. Math. Anal. Appl., 215, 415–422 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pao, C. V.: On fourth–order elliptic boundary value problems. Proc. Amer. Math. Soc., 128, 1023–1030 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988

  13. Krasnosel’skii, M.: Positive Solutions of Operator Equations, Noordhoff, Gronignen, 1964

  14. Ma, R. Y.,Wang, H. Y.: On the existence of positive solutions of fourth–order ordinary differential equations. Applicable Analysis, 59, 225–231 (1995)

    MATH  MathSciNet  Google Scholar 

  15. Bai, Z. B., Wang, H. Y.: On positive solutions of some nonlinear fourth–order beam equations. J. Math. Anal. Appl., 270, 357–368 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. He, Z. M., Ge, W. G.: The monotone iterative technique and periodic boundary value problem for first order impulsive equation. Acta Mathematica Sinica, English Series, 18(2), 253–262 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Yao, Q. L.: Existence, multiplicity and infinite solvability of positive solutions for one–dimensional p– Laplacian. Acta Mathematica Sinica, English Series, 21(4), 691–698 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Avery, R.: A generalization of the Leggett–Wiliams fixed point theorem. MSR Hot–Line, 3, 9–14 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Avery, R., Anderson, D.: Fixed point theorem of cone expansion and compression of functional type. J. Diff. Equa. Appl., 8, 1073–1083 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bai, Z. B., Ge, W. G.: Existence of three positive solutions for some second–order boundary value problems. Comput. Math. Appl., 48, 699–707 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhan Bing Bai or Wei Gao Ge.

Additional information

This work is supported by the National Nature Science Foundation of China (10371006)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Z.B., Ge, W.G. Existence of Positive Solutions to Fourth Order Quasilinear Boundary Value Problems. Acta Math Sinica 22, 1825–1830 (2006). https://doi.org/10.1007/s10114-005-0806-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0806-z

Keywords

MR (2000) Subject Classification

Navigation