Skip to main content
Log in

Embedding and Maximal Regular Differential Operators in Sobolev–Lions Spaces

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

This study focuses on vector–valued anisotropic Sobolev–Lions spaces associated with Banach spaces E 0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E 0 and E. In particular, the most regular class of interpolation spaces E α between E 0, E depending on α and the order of space are found and the boundedness of differential operators D α from this space to Eα–valued L p spaces is proved. These results are applied to partial differential–operator equations with parameters to obtain conditions that guarantee the maximal L p regularity and R–positivity uniformly with respect to these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sobolev, S. L., Certain applications of functional analysis to mathematical physics, Nauka, Novosibirski, 1962

  2. Besov, O. V., P. Ilin, V. P., Nikolskii, S. M., Integral representations of functions and embedding theorems, Moscow, 1975.

  3. Adams, R. A.: Sobolev Spaces, Academic Press, New York, 1975

  4. Maz’ya, V.: Sobolev spaces, Springer, Berlin, 1985

  5. Triebel, H.: Interpolation theory, Function spaces, Differential operators, North-Holland, Amsterdam, 1978

  6. Lions, J. L., Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math., 19, 5–68 (1964)

    MATH  Google Scholar 

  7. Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. Nachr., 186, 5–56 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shakhmurov, V. B.: Theorems about of compact embedding and applications. Dokl. Akad. Nauk. SSSR, 241(6), 1285–1288 (1978)

    MATH  MathSciNet  Google Scholar 

  9. Shakhmurov, V. B.: Embedding theorems in abstract function spaces and applications. Math. Sb., 134(176), 260–273 (1987)

    MATH  Google Scholar 

  10. Shakhmurov, V. B.: Embedding theorems and their applications to degenerate equations. Diff. Equations, 24, 672–682 (1988)

    MATH  MathSciNet  Google Scholar 

  11. Shakhmurov, V. B.: Coercive boundary value problems for regular degenerate differential-operator equations. J. Math. Anal. and Appl., 292(2), 605–620 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shakhmurov, V. B.: Embedding theorems in abstract spaces and their applications to degenerate differentialoperator equations, Dr. Science Thesis (Phys. -math.), Steklov Mat. Inst., Moscow, 1987.

  13. Krein, S. G.: Linear differential equations in Banach space, American Math. Society, Providence, 1971

  14. Gorbachuk, V. I., Gorbachuk, M. L.: Boundary value problems for differential-operator equations, Naukova Dumka, Kiev, 1984

  15. Shklyar, A. Ya.: Complate second order linear differential equations in Hilbert spaces, Birkhauser Verlag, Basel, 1997

  16. Amann, H., Linear and quasi-linear equations, 1, Birkhauser, Basel, 1995

  17. Yakubov, S.: Completeness of root functions of regular differential operators, Longman, scientific and technical, New York, 1994

  18. Yakubov, S., Yakubov, Ya.: Differential-operator equations. Ordinary and Partial Differential equations, Chapmen and Nall /CRC, Boca Raton, 2000

  19. Sobolevskii, P. E.: Inequalities coerciveness for abstract parabolic equations. Dokl. Akad. Nauk. SSSR, 57(1), 27–40 (1964)

    Google Scholar 

  20. Aubin, J. P.: Abstract boundary-value operators and their adjoins. Rend. Sem. Padova, 43, 1–33 (1970)

    MATH  MathSciNet  Google Scholar 

  21. Aibeche, A.: Coerciveness estimates for a class of nonlocal elliptic problems. Differential Equations and Dynamical Systems, 1(4), 341–351 (1993)

    MATH  MathSciNet  Google Scholar 

  22. Dore, G., Yakubov, S.: Semigroup estimates and non coercive boundary value problems. Semigroup Form, 60, 93–121 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karakas, H. I., Shakhmurov, V. B., Yakubov, S.: Degenerate elliptic boundary value problems. Applicable Analysis, 60, 155–174 (1996)

    MATH  MathSciNet  Google Scholar 

  24. Hieber, M., Prüss, J.: Neat kernels and maximal L p - L q -estimates for parabolic evolution equations. Comm. Partial Differential Equations, 22, 1647–1669 (1997)

    MATH  MathSciNet  Google Scholar 

  25. Denk, R., Hieber, M., Prüss, J.: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788), (2003)

    MathSciNet  Google Scholar 

  26. Fafini, A.: Su un problema ai limit per certa equazini astratte del secondo ordine. Rend. Sem. Mat. Univ. Padova, 53, 211–230 (1975)

    MathSciNet  Google Scholar 

  27. Yakubov, S.: A nonlocal boundary value problem for elliptic differential-operator equations and applications. Integr. Equ. Oper. Theory, 35, 485–506 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Stein, Elias M.: Singular Integrals and Differential properties of Functions, Princeton University Press, Princeton, New Jersey, 1970

  29. Burkholder, D. L.: A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions, Proc. conf. Harmonic analysis in honor of Antonu Zigmund, Chicago, 1981, Wads Worth, Belmont, 1983, 270–286

  30. Bourgain, J.: Some remarks on Banach spaces in which martingale differences are unconditional. Arkiv Math., 21, 163–168 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Clement, Ph., Pagter, B. de, Sukochev, F. A., Witvlet, H.: Schauder decomposition and multiplier theorems. Studia Math., 138, 135–163 (2000)

    MATH  MathSciNet  Google Scholar 

  32. Kree, P.: Sur les multiplicateurs dans FL aves poids. Annales Ins. Fourier, Grenoble, 16(2), 191–121 (1966)

    Google Scholar 

  33. Kurtz, D. S., Wheeden, R. L.: Result on weighted norm inequalityes for multiplier. Trans. Amer. Math. Soc., 255, 343–362 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lizorkin, P. I.: (L p , L q)-Multiplicators of Fourier Integrals. Dokl. Akad. Nauk SSSR, 152(4), 808–811 (1963)

    MATH  MathSciNet  Google Scholar 

  35. McConnell, Terry R.: On Fourier Multiplier Transformations of Banach-Valued Functions. Trans. Amer. Mat. Soc., 285(2), 739–757 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  36. Weis, L.: Operator-valued Fourier multiplier theorems and maximal L p regularity. Math. Ann., 319, 735–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Haller, R., Heck, H., Noll, A.: Mikhlin’s theorem for operator-valued Fourier multipliers in n variables. Math. Nachr., 244, 110–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pisier, G.: Les inegalites de Khintchine–Kahane d’apres C. Borel, Seminare sur la geometrie des espaces de Banach 7 (1977–78), Ecole Polytechnique, Paris

  39. Dore, G., Venni, A.: On the closedness of the sum of two closed operators. Math. Z., 196, 189–201 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lamberton, D.: Equations d’evalution lineaires associeees a’des semigroupes de contractions dans less espaces L p . J. Funct. Anal., 72, 252–262 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  41. Agmon, S., Nirenberg, L.: Properties of solutions of ordinary di.erential equations in Banach spaces. Comm. Pure Appl. Math., 16, 121–239 (1963)

    MATH  MathSciNet  Google Scholar 

  42. Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 119–147 (1962)

    MATH  MathSciNet  Google Scholar 

  43. Kato, S.: Perturbation theory of linear operators M, Springer-Verlag, New York, 1972

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli B. Shakhmurov.

Additional information

This work is supported by the grant of Istanbul University (Project UDP-227/18022004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhmurov, V.B. Embedding and Maximal Regular Differential Operators in Sobolev–Lions Spaces. Acta Math Sinica 22, 1493–1508 (2006). https://doi.org/10.1007/s10114-005-0764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0764-5

Keywords

MR (2000) Subject Classification

Navigation