Skip to main content
Log in

On the Boundary Behaviour, Including Second Order Effects, of Solutions to Singular Elliptic Problems

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

For γ ≥ 1 we consider the solution u = u(x) of the Dirichlet boundary value problem Δu + u γ = 0 in Ω, u = 0 on ∂Ω. For γ = 1 we find the estimate

$$ u{\left( x \right)} = p{\left( {\delta {\left( x \right)}} \right)}{\left[ {1 + A{\left( x \right)}{\left( {\log \frac{1} {{\delta {\left( x \right)}}}} \right)}^{{ - \in }} } \right]}, $$

where \( p{\left( r \right)} \approx r{\sqrt {2\log {\left( {1 \mathord{\left/ {\vphantom {1 r}} \right. \kern-\nulldelimiterspace} r} \right)}} } \) near r = 0, δ(x) denotes the distance from x to ∂Ω, 0 < < 1/2, and A(x) is a bounded function. For 1 < γ < 3 we find

$$ u{\left( x \right)} = {\left( {\frac{{\gamma + 1}} {{{\sqrt {2{\left( {\gamma - 1} \right)}} }}}\delta {\left( x \right)}} \right)}^{{\frac{2} {{\gamma + 1}}}} {\left[ {1 + A{\left( x \right)}{\left( {\delta {\left( x \right)}} \right)}^{{2\frac{{\gamma - 1}} {{\gamma + 1}}}} } \right]}. $$

For γ = 3 we prove that

$$ u{\left( x \right)} = {\left( {2\delta {\left( x \right)}} \right)}^{{\frac{1} {2}}} {\left[ {1 + A{\left( x \right)}\delta {\left( x \right)}\log \frac{1} {{\delta {\left( x \right)}}}} \right]}. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crandall, M. G., Rabinowitz, P. H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Comm. Part. Diff. Eq., 2, 193–222 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Berhanu, S., Gladiali, F., Porru, G.: Qualitative properties of solutions to elliptic singular problems. J. of Inequal. & Appl., 3, 313–330 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. McKenna, P. J., Reichel, W.: Sign–changing solutions to singular second–order boundary value problems. Adv. Differential Equations, 6, 441–460 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Lazer, A. C., McKenna, P. J.: On a singular nonlinear elliptic boundary value problem. Proc. American. Math. Soc., 111, 721–730 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1977

  6. Bandle, C., Marcus, M.: On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems. Differential and Integral Equations, 11, 23–34 (1998)

    MATH  MathSciNet  Google Scholar 

  7. Kawohl, B.: On a class of singular elliptic equations. Pitman Res. Notes Math. Ser., 266, 156–163 (1992)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Berhanu.

Additional information

Partially supported by FIRB 2001 and PRIN 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berhanu, S., Cuccu, F. & Porru, G. On the Boundary Behaviour, Including Second Order Effects, of Solutions to Singular Elliptic Problems. Acta Math Sinica 23, 479–486 (2007). https://doi.org/10.1007/s10114-005-0680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0680-8

Keywords

MR (2000) Subject Classification

Navigation