Skip to main content

Advertisement

Log in

Water management and aquatic ecosystem services of a tropical reservoir (Itaparica, São Francisco, Brazil)

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Reservoirs have a wide variety of uses that have led to frequent conflicts over ecological conservation and contamination, especially as land management has intensified. Oligotrophication must be implemented in numerous tropical reservoirs that experience advanced eutrophication to maintain aquatic ecosystem functions. To quantify impacts on ecosystem functions and to develop an adaptive management policy, multiple studies have been conducted on the Itaparica Reservoir, São Francisco River, in the semi-arid north-eastern region of Brazil. Here, we add to that existing body of knowledge through investigating how nutrient accumulation is affected by water exchange between the main river flow and Icó-Mandantes Bay. Operational water-level fluctuations in the reservoir create large desiccated littoral areas that release high amounts of nutrients when they are rewetted. In particular, water-level variation promotes proliferation of Egeria densa, a noxious weed, thus elevating trophic levels of the Itaparica Reservoir and Icó-Mandantes Bay. Analysis with a P efficiency model determined 25 μg P L−1 to be the critical concentration and further indicated that the critical load in both bodies of water have been exceeded. Moreover, intensive fish aquaculture using net cages has led to further overtaxing of the reservoir. We conclude that an effective ecological reservoir management policy must involve oligotrophication, harvesting of noxious water weeds for use as soil amendment in agriculture or biogas production, “blue” aquaculture, and limiting hydroelectric power production based on current water availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos MA, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-years old tropical reservoir (Petit Saut, French Guiana). Glob Biolgeochem Cycles 19. https://doi.org/10.1029/2005GB002457

  • ANA (2015) Encarta Especial sobre a Crise Hídrica. Agência Nacional de Águas, Brasília, p 30

    Google Scholar 

  • Andrade e Santos H, Pompea PS, Kenji DOL (2012) Changes in the flood regime of São Francisco River (Brazil) from 1940 to 2006. Reg Environ Chang 12:123–132. https://doi.org/10.1007/s10113-011.0240-y

    Article  Google Scholar 

  • Aragão-Tavares NKC, Severiano JS, Moura AN (2015) Phytoplankton composition of the Itaparica and Xingó reservoirs, São Francisco River, Brazil. Brazilian Journal of Biology 75(3):616-627. https://doi.org/10.1590/1519-6984.19413

  • Bakker ES, Hilt S (2015) Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquat Ecol 50:485–498. https://doi.org/10.1007/s10452-015-9556-x

    Article  CAS  Google Scholar 

  • Baptista MG, Nixdorf B (2014) Low disturbances favor steady state: case of cyanobacterial monodominance on a Brazilian coastal lagoon. Inland Waters 4:243–254. https://doi.org/10.5268/IW-4.2.648

    Article  CAS  Google Scholar 

  • Bastien J, Demarty M, Tremblay A (2011) CO2 and CH4 diffusive and degassing emissions from 2003 to 2009 at Eastmain 1 hydroelectric reservoir, Québec, Canada. Inland Waters 1:113–123. https://doi.org/10.5268/IW-1.2.349

    Article  CAS  Google Scholar 

  • Bostock J, McAndrew B, Richards R, Jauncey K, Telfer T, Lorenzen K, Little D, Ross L, Handisyde N, Gatward I, Corner R (2010) Aquaculture: global status and trends. Phil Trans R Soc B 365:2897–2912. https://doi.org/10.1098/rstb.2010.0170

    Article  Google Scholar 

  • Boyd J, Banzhaf S (2007) What are ecosystem services? The need for standardized environmental accounting unit. Ecol Econ 63:616–626. https://doi.org/10.1016/j-.ecolecon.2007.01.002

    Article  Google Scholar 

  • Brazil (1997) Da política nacional de recursos hídricos. LeiN° 9.433, de 8 de Janeiro 1997. Institui a Política Nacional de Recursos Hídricos

  • Carrillo Y, Guarín A, Guillot G (2006) Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Colombia). Aquat Bot 85:7–15. https://doi.org/10.1016/j.aquabot.2006.01.006

    Article  Google Scholar 

  • Casper P, Chan OC, Furtado ALS, Adams DD (2003) Methane in an acidic bog lake: the influence of peat in the catchment on the biogeochemistry of methane. Aquat Sci 65:36–46. https://doi.org/10.1007/s000270300003

    Article  CAS  Google Scholar 

  • Castro CNDC (2011) Transposição Do Rio São Francisco: Análise De Oportunidade Do Projeto. IpeaGovBr

  • CONAMA (2005) Resolution n 357, de 17 de Março de 2005 Diário Oficial da Republica Federativa do Brasil. Brasília, DF

    Google Scholar 

  • Coutinho RM, Kraenkel RA, Prado PI (2015) Catastrophic regime shift in water reservoirs and São Paulo water supply crisis. PLoS One 10:e0138278. https://doi.org/10.1371/journal.pone.0138278

    Article  CAS  Google Scholar 

  • DEV (2018) Deutsche Einheitsverfahren zur Wasser-, Abwasserund Schlammuntersuchung. VCH, Weinheim, Loseblattsammlung 2015:39–40. https://doi.org/10.1002/lipi.19950970113

    Article  Google Scholar 

  • Döll P, Hauschild M (2002) Model-based scenarios of water use in two semi-arid Brazilian states. Reg Environ Chang 2:150–162. https://doi.org/10.1007/s10113-002-0046-z

    Article  Google Scholar 

  • FADURPE (2011) Inventário dos Ecossistemas Aquáticos do Baixo São Francisco Reservatório de Itaparica. 1° - 3°. Relatório Anual. Fundação Apolônio Salles de Desenvolvimento Educacional, Recife, PE

  • FAO (2016) National Aquaculture Legislation Overview (NALO). www.fao-org/fishery/collection/nalo/en. Access 21.08.2016

  • Gunkel G (2009) Hydropower—a green energy? Tropical reservoirs and greenhouse gas emissions. CLEAN, Soil, Air, Water 37:726–734. https://doi.org/10.1002/clen.200900062

    Article  CAS  Google Scholar 

  • Gunkel G (2018a) Água no Contexto das Bacias Hidrográficas: Qualidade, contaminação e monitoreamento. In: Philippi Jr A and Sobral MC (eds.) Direito Ambiental, vol 4. Gestão Sustentável Bacias Hidrográficas. Embrapa, Brasilia, Brazil, in press

  • Gunkel G (2018b) Manejo das Bacias Hidrográficas: Servicios ecossistemas e tecnologias avançadas In: Philippi Jr A & Sobral MC (eds.) Direito Ambiental, vol 4. Gestão Sustentável Bacias Hidrográficas. Embrapa, Brasilia, Brazil, in press

  • Gunkel G, Sobral M (2007) Reservoirs and river basins management: exchange of experience from Brazil, Portugal and Germany. Universitätsverlag der TU Berlin, Berlin, pp 279

  • Gunkel G, Sobral M (2013) Re-oligotrophication as a challenge for tropical reservoir management with reference to Itaparica Reservoir, São Francisco, Brazil. Wat Sci Technol 67(4):708–714. https://doi.org/10.2495/RBM130261

    Article  CAS  Google Scholar 

  • Gunkel G, Silva JA, Sobral MC (2013a) Sustainable management of water and land in semiarid areas. Editora Universitária UFPE, Recife, pp 295

    Google Scholar 

  • Gunkel G, Steemann J, Sobral MC (2013b) Carrying capacity limits in net cage fish production in water reservoirs. In: Gunkel G, Silva JA, Sobral MC (eds) Sustainable management of water and land in semiarid areas. Editora Universitária UFPE, Recife, pp 99–117

    Google Scholar 

  • Gunkel G, Lima D, Selge F, Sobral M, Calado S (2015a) Aquatic ecosystem services of reservoirs in semi-arid areas: sustainability and reservoir management. WIT Trans Ecol Environ 197:187–200. https://doi.org/10.2495/RMI50171

    Article  Google Scholar 

  • Gunkel G, Matta E, Selge F, Nogueira da Silva GM, Sobral M (2015b) Carrying capacity limits of net cage aquaculture for Brazilian reservoirs. Rev Bras Cienc Ambientais 36:127–144. https://doi.org/10.5327/z2176

    Article  Google Scholar 

  • Halide H, Stigebrandt A, Rehbein M, McKinnon AD (2009) Developing a decision support system for sustainable cage aquaculture. Environ Model Softw 24:694–702. https://doi.org/10.1016/j.envsoft.2008.10.013

    Article  Google Scholar 

  • Huszar VLM, Caraco NF, Roland F, Cole J (2006) Nutrient-chlorophyll relationships in tropical-subtropical lakes: do temperate models fit? Biogeochemistry 79:239–250. https://doi.org/10.1007/s10533-006-9007-9

    Article  CAS  Google Scholar 

  • INNOVATE (2016). Interplay among multiple uses of water reservoirs via innovative coupling of substance cycles in aquatic and terrestrial ecosystems. http://www.innovate.tu-berlin.de/. Accessed 26 July 2016

  • IPCC (2014) Central and South America. In: IPCC (ed) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, pp 1499–1566

  • Lima D, Gunkel G (2018) Egeria densa, a noxious weed, as a challenge for hydropower reservoir management. Lakes & Reservoirs: Research and Management

  • Keitel J, Zak D, Hupfer M (2016) Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophytes dieback, and oxygen availability on phosphorus mobilization. Environ Sci Pollut Res 23:6883–6894. https://doi.org/10.1007/s11356-015-5915-3

    Article  CAS  Google Scholar 

  • King J, Brown C, Sabet H (2003) A scenario-based holistic approach to environmental flow assessment for rivers. River Res Applic 19:619–639. https://doi.org/10.1002/rra.709

    Article  Google Scholar 

  • MacIntyre S, Wanninkhof R, Chanton JP (1995) Trace gas exchange across the air-water interface in freshwater and costal marine environments. In: Matson PA, Harris RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell science, Cambridge, pp 52–97

    Google Scholar 

  • Matta E, Selge F, Gunkel G, Rossiter K, Jourieh A, Hinkelmann R (2016) Simulations of nutrient emissions from a net cage aquaculture system in a Brazilian bay. Water Sci Technol 73:2430–2435. https://doi.org/10.2166/wst.2016.092

    Article  CAS  Google Scholar 

  • Matta E, Selge F, Gunkel G, Hinkelmann R (2017) Three-dimensional modeling of wind- and temperature-induced flows in the Icó-Mandantes bay, Itaparica reservoir, NE Brazil. Water 9:772. https://doi.org/10.3390/w9100772

    Article  Google Scholar 

  • MMA (2005) Instrução Normativa Interministerial No 7. Gabinete da Ministra instrução normativa interministerial, de 28 de Abril de 2005. Ministra de Estado do Meio Ambiente DOU29.04.2005

  • Mosley LM (2015) Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci Rev 140:203–214. https://doi.org/10.1016/j.earscirev.2014.11.010

    Article  CAS  Google Scholar 

  • Nair P, Logan T, Sharpley A, Sommers L, Tabatabai M, Yuan T (1984) Interlaboratory comparison of a standardized phosphorus adsorption procedure. J Environ Qual 13:591–595. https://doi.org/10.2134/jeg1984.00472425001300040016x

    Article  Google Scholar 

  • Ometto JP, Pacheco FS, Cimbleris ACP, Stech JL, Lorenzzetti JA, Assireu A, Santos  MA, Matvienko B, Rosa LP, Galli CS, Abe DS, Tundisi JG, Barros NO, Mendonça RF, Roland F (2012) Carbon dynamic and emissions in Brazilian hydropower reservoirs. In: deAlcantara EH (ed) Energy resources: development, distribution and exploitation. Nova Science Publishers, Inc, Hauppauge, pp 155–188

  • Reyer CPO, Adams S, Albrecht T, Baarsch F, Boit A, Trujillo NC, Carlsburg M, Coumou D, Eden A, Fernandes E, Marcus R, Mengel M, Mira-Salama D, Perette M, Pereznieto P, Rammig A, Reihhardt J, Robinson A, Rocha M, Sakschwewski B, Schaeffer M, Schleussner C-F, Serdeczny O, Thonicke K (2017) Climate change impacts in Latin America and the Caribbean and their implications for development. Reg Environ Chang 17:1601–1621. https://doi.org/10.1007/s10113-015-0854-6

    Article  Google Scholar 

  • Rodriguez M, Casper P (2013) Carbon cycling and greenhouse gas emissions. In: Gunkel G, Silva JA, Sobral MC (eds) Sustainable management of water and land in semiarid areas. Editora Universitaria UFPE, Recife, pp 79–98

    Google Scholar 

  • Rodriguez M, Casper P (2018) Green house gases emissions from a semi-arid reservoir in Northeast Brazil. Reg Environ Change. https://doi.org/10.1007/s10113-018-1289-7

    Article  Google Scholar 

  • Selge F (2017) Aquatic ecosystem functions and oligotrophication potential of the Itaparica reservoir, São Francisco river, in the semi-arid Northeast Brazil. ITU Schriftenreihe Nr. 33, Papierflieger Verlag, Clausthal-Zellerfeld, p 141

  • Selge F, Hagel H, Gunkel G, Doluschitz R (2015) Annual rainfall variability and economic dependency of smallholder agriculture in the semi-arid Northeast Brazil. Revista Brasileira Ciencias Ambientais 36:145–156. https://doi.org/10.5327/z2176

    Article  Google Scholar 

  • Selge F, Matta E, Hinkelmann R, Gunkel G (2016) Nutrient load concept-reservoir vs. bay impacts: a case study from a semi-arid watershed. Water, Sci Technol 74(7):1671–1679. https://doi.org/10.2166/wst.2016.342

    Article  CAS  Google Scholar 

  • Snow A, Anderson B, Wootton B (2012) Flow-through land-based aquaculture wastewater and its treatment in subsurface flow constructed wetlands. Environ Rev 20:54–69. https://doi.org/10.1139/A11-023

    Article  CAS  Google Scholar 

  • Suen JP, Eheart JW (2006) Reservoir management to balance ecosystem and human needs: incorporating the paradigm of the ecological flow regime. Water Resour Res W03417. https://doi.org/10.1029/2005WR004314

  • Turner BL, Haygarth PM (2001) Phosphorus solubilization in rewetted soils. Nature 411:258. https://doi.org/10.1038/35077146

    Article  CAS  Google Scholar 

  • Velini ED, Corrêa MR, Tanaka RH, Bravin LF, Antuniassi UR, Carvalho FT, Galo MLBT (2005) Avaliação operacional do controle mecânico de plantas aquáticas imersas no reservatório de Jupiá. Planta Daninha, Viçosa-MG 23:277–285. https://doi.org/10.1590/S0100-8358

    Article  Google Scholar 

  • VLStL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surface as sources of greenhouse gases to atmosphere: a global estimate. Bioscience 50:766–775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2

  • Vollenweider R, Kerekes J (1982) Eutrophication of waters: monitoring, assessment, and control. OECD, Paris

    Google Scholar 

  • Wehrli B (2011) Climate science: renewable but not carbon-free. Nat Geosci 4:585–586. https://doi.org/10.1038/ngeo1226

    Article  CAS  Google Scholar 

  • Yarrow M, Marin VH, Finlayson M, Tironi A, Delgado LE, Fischer F (2009) The ecology of Egeria densa Planchon (Liliopsida: Alismatales): a wetland ecosystem engineer. Rev Chil Hist Nat 82:299–313

Download references

Acknowledgments

The study reports data from the CHESF monitoring program conducted during 2007–2010 by the FADURPE and the INNOVATE project.

Funding

The binational INNOVATE project is funded by the German Federal Ministry of Education and Research (BMBF), the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Ministério da Ciência, Tecnologia e Inovação (MCTI), and the Universidade Federal de Pernambuco (UFPE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Gunkel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunkel, G., Selge, F., Keitel, J. et al. Water management and aquatic ecosystem services of a tropical reservoir (Itaparica, São Francisco, Brazil). Reg Environ Change 18, 1913–1925 (2018). https://doi.org/10.1007/s10113-018-1324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-018-1324-8

Keywords

Navigation