Skip to main content

Advertisement

Log in

Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors?

  • Review Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Globally increasing temperature and modifications in precipitation patterns induce major environmental alterations in aquatic ecosystems. Particularly profound changes are predicted for arctic to temperate shallow lakes where modifications in temperature affect the distribution of ice and ice-free periods, thereby altering the timing of peak productivity, while changes in precipitation strongly alter water table depth with concomitant modifications in light distribution, temperature, and water chemistry, collectively altering the balance between primary production, organic matter consumption, and decomposition. Due to direct effects of temperature on primary productivity and microbial decomposition, raising temperatures alter the capacity of aquatic ecosystems for carbon sequestration and greenhouse gas release, and this affects atmospheric greenhouse gas concentrations and temperature, implying a feedback loop between environmental effects on ecosystems and climate change. Moreover, elevated temperature can modify the bioavailability of pollutants deposited in the past, and increase the probability for their uptake by aquatic organisms. The latter processes in turn reduce primary productivity and alter microbial decomposition, creating thus another key feedback loop between productivity, climate change, and environmental pollutants. However, warming can also enhance eutrophication and deposition of pollutants in organic sediments, further speeding up productivity and eutrophication, with the overall net effects depending on the quantitative significance of different processes. Therefore, the feedbacks arising from pollution stress must be incorporated in models intending to predict the carbon balance of aquatic ecosystems under globally changing environmental conditions. Further work on carbon balance and greenhouse gas release of aquatic ecosystems should focus on quantitative characterization of the feedback loops operative, and on how global change affects these feedback loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. doi:10.4319/lo.2009.54.6_part_2.2283

    Article  Google Scholar 

  • Aizawa K, Miyachi S (1986) Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria. FEMS Microbiol Lett 39:215–233. doi:10.1111/j.1574-6968.1986.tb01860.x

    Article  CAS  Google Scholar 

  • Allen ED, Spence DHN (1981) The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytol 87:269–283. doi:10.1111/j.1469-8137.1981.tb03198.x

    Article  CAS  Google Scholar 

  • Arneth A, Harrison SP, Zaehle S, Tsigaridis K, Menon S, Bartlein PJ, Feichter J, Korhola A, Kulmala M, O’Donnell D, Schurgers G, Sorvari S, Vesala T (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525–532. doi:10.1038/ngeo905

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009. doi:10.1029/2004GB002238

    Article  CAS  Google Scholar 

  • Beaulieu JJ, Nietch CT, Young JL (2015) Controls on nitrous oxide production and consumption in reservoirs of the Ohio River basin. J Geophys Res Biogeosci 120:1995–2010. doi:10.1002/2015JG002941

    Article  CAS  Google Scholar 

  • Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Villani MG, Houweling S, Dentener F, Dlugokencky EJ, Miller JB, Gatti LV (2009) Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals. J Geophys Res-Atmos 114:D22301. doi:10.1029/2009JD012287

    Article  CAS  Google Scholar 

  • Binzer A, Guill C, Rall BC, Brose U (2016) Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Glob Chang Biol 22:220–227. doi:10.1111/gcb.13086

    Article  Google Scholar 

  • Blenckner T (2001) Climate related impacts on a lake: from physics to biology. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, Tryck and Medier edn. Uppsala Universitet, Uppsala

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200. doi:10.1007/s00204-013-1079-4

    Article  CAS  Google Scholar 

  • Boudou A, Ribeyre F (1997) Mercury in the food web: accumulation and transfer mechanisms. Met Ions Biol Syst 34:289–319

    CAS  Google Scholar 

  • Breuer K, Melzer A (1990) Heavy metal accumulation (lead and cadmium) and ion exchange in three species of Sphagnaceae. I. Main principles of heavy metal accumulation in Sphagnaceae. Oecologia 82:461–467. doi:10.1007/BF00319786

    Article  CAS  Google Scholar 

  • Buckman AH, Brown SB, Small J, Muir DC, Parrott J, Solomon KR, Fisk AT (2007) Role of temperature and enzyme induction in the biotransformation of polychlorinated biphenyls and bioformation of hydroxylated polychlorinated biphenyls by rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 41:3856–3863. doi:10.1021/es062437y

    Article  CAS  Google Scholar 

  • Carter MS, Larsen KS, Emmett B, Estiarte M, Field C, Leith ID, Lund M, Meijide A, Mills RTE, Niinemets Ü, Peñuelas J, Portillo-Estrada M, Schmidt IK, Selsted MB, Sheppard LJ, Sowerby A, Tietema A, Beier C (2012) Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands – responses to climatic and environmental changes. Biogeosciences 9:3739–3755. doi:10.5194/bg-9-3739-2012

    Article  CAS  Google Scholar 

  • Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32:95–105. doi:10.1007/s10653-009-9268-z

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184. doi:10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Copaciu F, Opriş O, Coman V, Ristoiu D, Niinemets Ü, Copolovici L (2013) Diffuse water pollution by anthraquinone and azo dyes in environment importantly alters foliage volatiles, carotenoids and physiology in wheat (Triticum aestivum). Water Air Soil Pollut 224:1478. doi:10.1007/s11270-013-1478-4

    Article  CAS  Google Scholar 

  • Cremona F, Kõiv T, Nõges P, Pall P, Tõnno I, Alliksaar T, Rõõm E-I, Feldmann T, Viik M, Nõges T (2014a) Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia 731:109–123. doi:10.1007/s10750-013-1686-3

    Article  CAS  Google Scholar 

  • Cremona FH, Kõiv T, Kisand V, Laas A, Zingel P, Agasild H, Feldmann T, Järvalt A, Nõges P, Nõges T (2014b) From bacteria to piscivorous fish: estimates of whole-lake and component-specific metabolism with an ecosystem approach. PLoS One 9:e101845. doi:10.1371/journal.pone.0101845

    Article  CAS  Google Scholar 

  • Cremona FH, Timm H, Agasild I, Tõnno T, Feldmann RI, Jones T, Nõges T (2014c) Benthic foodweb structure in a large shallow lake studied by stable isotope analysis. Freshw Sci 33:885–894. doi:10.1086/677540

    Article  Google Scholar 

  • Crompton TR (2007) Toxicants in aqueous ecosystems. A guide for the analytical and environmental chemist. Springer, Berlin. doi:10.1007/978-3-540-35741-4

    Google Scholar 

  • Cuhra M, Traavik T, Bøhn T (2013) Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22:251–262. doi:10.1007/s10646-012-1021-1

    Article  CAS  Google Scholar 

  • Danilova OV, Belova SE, Kulichevskaya IS, Dedysh SN (2015) Decline of activity and shifts in the methanotrophic community structure of an ombrotrophic peat bog after wildfire. Microbiology 84:624–629. doi:10.1134/S0026261715050045

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–587

  • Dijkstra JA, Buckman KL, Ward D (2013) Experimental and natural warming elevates mercury concentrations in estuarine fish. PLoS One 8:e58401. doi:10.1371/journal.pone.0058401

    Article  CAS  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22: DOI:10.1029/2006GB002854,

  • Eisenreich SJ (2005) Climate change and the European water dimension. Report to the European water directors. European Commission. Joint Research Centre, Ispra

  • Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nat Geosci 4:895–900. doi:10.1038/ngeo1323

    Article  CAS  Google Scholar 

  • Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B (2014) Climate Change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Finlay K, Leavitt PR, Patoine A, Wissel B (2010) Magnitudes and controls of organic and inorganic carbon flux through a chain of hardwater lakes on the northern Great Plains. Limnol Oceanogr 55:1551–1564. doi:10.4319/lo.2010.55.4.1551

    Article  CAS  Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233. doi:10.1016/S0048-9697(03)00141-4

    Article  CAS  Google Scholar 

  • Furuhama A, Hasunuma K, Hayashi TI, Tatarazako N (2016) Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties. SAR QSAR Environ Res 27:343–362. doi:10.1080/1062936X.2016.1174151

    Article  CAS  Google Scholar 

  • Gerten D, Adrian R (2000) Climate driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066. doi:10.4319/lo.2000.45.5.1058

    Article  Google Scholar 

  • del Giorgio PA, Williams PB (2005) The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In: del Giorgio PA, Williams PJ (eds) Respiration in aquatic ecosystems. Oxford University Press, Oxford, pp 266–303. doi:10.1093/acprof:oso/9780198527084.001.0001

    Chapter  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi:10.1021/es9015553

    Article  CAS  Google Scholar 

  • Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis ID, Band LE, Brush GS (2006) Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For Ecol Manag 236:177–192. doi:10.1016/j.foreco.2006.09.002

    Article  Google Scholar 

  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481. doi:10.1038/nature09186

    Article  CAS  Google Scholar 

  • Haas E, Klatt S, Fröhlich A, Kraft P, Werner C, Kiese R, Grote R, Breuer L, Butterbach-Bahl K (2013) Landscape DNDC: a process model for simulation of biosphere-atmosphere-hydrosphere exchange processes at site and regional scale. Landsc Ecol 28:615–636. doi:10.1007/s10980-012-9772-x

    Article  Google Scholar 

  • Hakanson L, Nilsson A, Andersson T (1988) Mercury in fish in Swedish lakes. Environ Pollut 49:145–162. doi:10.1016/0269-7491(88)90246-1

    Article  CAS  Google Scholar 

  • Harris TD, Smith VH (2016) Do persistent organic pollutants stimulate cyanobacterial blooms? Inland Waters 6:124–130. doi:10.5268/IW-6.2.887

    Article  Google Scholar 

  • Hedman JE, Rüdel H, Gercken J, Bergek S, Strand J, Quack M, Appelberg M, Förlin L, Tuvikene A, Bignert A (2011) Eelpout (Zoarces viviparus) in marine environmental monitoring. Mar Pollut Bull 62:2015–2029. doi:10.1016/j.marpolbul.2011.06.028

    Article  CAS  Google Scholar 

  • Hering D, Carvalho L, Argillier C, Beklioglu M, Borja A, Cardoso AC, Duel H, Ferreira T, Globevnik L, Hanganuj J, Hellsten S, Jeppesen E, Kodeš V, Solheim AL, Nõges T, Ormerod S, Panagopoulos Y, Schmutz S, Venohr M, Venohr M (2015) Managing aquatic ecosystems and water resources under multiple stress - an introduction to the MARS project. Sci Total Environ 503–504:10–21. doi:10.1016/j.scitotenv.2014.06.106

  • Hofstra N, Bouwman AF (2005) Denitrification in agricultural soils: summarizing published data and estimating global annual rates. Nutr Cycl Agroecosyst 72:267–278. doi:10.1007/s10705-005-3109-y

    Article  Google Scholar 

  • Holmstrup M, Bindesbol AM, Oostingh GJ, Duschl A, Scheil V, Kohler HR, Loureiro S, Soares A, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiainen J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505–1514. doi:10.5194/bg-7-1505-2010

    Article  CAS  Google Scholar 

  • Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32:32–48. doi:10.1002/etc.2043

    Article  CAS  Google Scholar 

  • Hope D, Palmer SM, Billet MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages. Hydrol Process 18:3255–3275. doi:10.1002/hyp.5657

    Article  Google Scholar 

  • Huttunen JT, Alm J, Saarijärvi E, Lappalainen KM, Silvola J, Martikainen PJ (2003) Contribution of winter to the annual CH4 emission from a eutrophied boreal lake. Chemosphere 50:247–250. doi:10.1016/S0045-6535(02)00148-0

    Article  CAS  Google Scholar 

  • Hvatum OØ, Bølviken B, Steinnes E (1983) Heavy metals in Norwegian ombrotrophic bog. Oikos 35:351–356

    CAS  Google Scholar 

  • Interlandi SJ (2002) Nutrient-toxicant interactions in natural and constructed phytoplankton communities: results of experiments in semi-continuous and batch culture. Aquat Toxicol 61:35–51. doi:10.1016/S0166-445X(02)00016-4

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2015) Outdoor air pollution. IARC monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon

    Google Scholar 

  • Jansson M, Persson L, De Roos AM, Jones RI, Tranvik LJ (2007) Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends Ecol Evol 22:316–322. doi:10.1016/j.tree.2007.02.015

    Article  Google Scholar 

  • Järvinen M, Lehtinen S, Arvola L (2006) Variations in phytoplankton assemblage in relation to environmental and climatic variation in a boreal lake. Verh Int Ver Limnol 29:1841–1844

    Google Scholar 

  • Jenkins MB, Chen JH, Kadner DJ, Lion LW (1994) Methanotrophic bacteria and facilitated transport of pollutants in aquifer material. Appl Environ Microbiol 60:3491–3498

    CAS  Google Scholar 

  • Jeppesen E, Brucet S, Naselli-Flores L, Papastergiadou E, Stefanidis K, Nõges T, Nõges P, Attayde JL, Zohary T, Coppens J, Bucak T, Menezes RF, Freitas FRS, Kernan M, Søndergaard M, Beklioğlu M (2015) Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201–227. doi:10.1007/s10750-014-2169-x

    Article  Google Scholar 

  • Jonsson A, Karlsson J, Jansson M (2003) Sources of carbon dioxide supersaturation in clearwater and humic lakes in northern Sweden. Ecosystems 6:224–235. doi:10.1007/s10021-002-0200-y

    Article  CAS  Google Scholar 

  • Joppa LN, Boyd JW, Duke CS, Hampton S, Jackson ST, Jacobs KL, Kassam KA, Mooney HA, Ogden LA, Ruckelshaus M, Shogren JF (2016) Government: plan for ecosystem services. Science 351:1037. doi:10.1126/science.351.6277.1037-a

    Article  CAS  Google Scholar 

  • Juganson K, Ivask A, Blinova I, Mortimer M, Kahru A (2015) NanoE-Tox: new and in-depth database concerning ecotoxicity of nanomaterials. Beilstein J Nanotechnol 6:1788–1804. doi:10.3762/bjnano.6.183

    Article  CAS  Google Scholar 

  • Juottonen H, Kotiaho M, Robinson D, Merila P, Fritze H, Tuittila E-S (2015) Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific. FEMS Microbiol Ecol 91:fiv094. doi:10.1093/femsec/fiv094

    Article  CAS  Google Scholar 

  • Juutinen S, Rantakari M, Kortelainen P, Huttunen JT, Larmola T, Alm J, Silvola J, Martikainen PJ (2009) Methane dynamics in different boreal lake types. Biogeosciences 6:209–223. doi:10.5194/bg-6-209-2009

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  Google Scholar 

  • Kahru A, Ivask A (2013) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46:823–833. doi:10.1021/ar3000212

    Article  CAS  Google Scholar 

  • Kai FM, Tyler SC, Randerson JT, Blake DR (2014) Reduced methane growth rate explained by decreased northern hemisphere microbial sources. Nature 476:194–197. doi:10.1038/nature10259

    Article  CAS  Google Scholar 

  • Karlsson J, Berggren M, Ask J, Byström P, Jonsson A, Laudon H, Jansson M (2012) Terrestrial organic matter support of lake food webs: evidence from lake metabolism and stable hydrogen isotopes of consumers. Limnol Oceanogr 57:1042–1048. doi:10.4319/lo. 2012.57.4.1042

    Article  CAS  Google Scholar 

  • Kaye JP, McCulley R, Burke IC (2005) Carbon fluxes, nitrogen cycling and soil microorganisms in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587. doi:10.1111/j.1365-2486.2005.00921.x

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann B, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quéré C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Clim Chang 6:812–823. doi:10.1038/ngeo1955

    Google Scholar 

  • Kolada A, Willby N, Dudley B, Nõges P, Søndergaard M, Hellsten S, Mjelde M, Penning E, van Geest G, Bertrini V, Ecke F, Mäemets H, Karus K (2014) The applicability of macrophyte compositional metrics for assessing eutrophication in European lakes. Ecol Indic 45:407–415. doi:10.1016/j.ecolind.2014.04.049

    Article  CAS  Google Scholar 

  • Kosten S, Huszar VLM, Bécares E, Costa LS, van Donk E, Hansson L-A, Jeppesen E, Kruk C, Lacerot G, Mazzeo N, Meester LD, Moss B, Lürling M, Nõges T, Romo S, Scheffer M (2012) Warmer climate boosts cyanobacterial dominance in lakes. Glob Chang Biol 18:118–126. doi:10.1111/j.1365-2486.2011.02488.x

    Article  Google Scholar 

  • Krabbenhoft DP (2004) Methyl mercury contamination of aquatic ecosystems: a widespread problem with many challenges for the chemical sciences. In: Norling P, Wood-Black F, Masciangioli TM (eds) Water and sustainable development: opportunities for the chemical sciences: a workshop report to the Chemical Sciences Roundtable, vol 3. US National Academy Press, Washington http://www.ncbi.nlm.nih.gov/books/NBK83731/

    Google Scholar 

  • Krabbenhoft DP, Sunderland EM (2013) Global change and mercury. Science 341:1457–1458. doi:10.1126/science.1242838

    Article  CAS  Google Scholar 

  • Kulmala M, Nieminen T, Chellapermal R, Makkonen R, Bäck J, Kerminen V-M (2013) Climate feedbacks linking the increasing atmospheric CO2 concentration, BVOC emissions, aerosols and clouds in forest ecosystems. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, Tree physiology, 5. Springer, Berlin, pp 489–508. doi:10.1007/978-94-007-6606-8_17

  • Laetz CA, Baldwin DH, Collier TK, Hebert V, Stark JD, Scholz NL (2009) The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Environ Health Perspect 117:348–353. doi:10.1289/ehp.0800096

    Article  CAS  Google Scholar 

  • Larsson P, Andersson A, Broman D, Nordbäck J, Lundberg E (2000) Persistent organic pollutants (POPs) in pelagic systems. Ambio 29:202–209. doi:10.1579/0044-7447-29.4.202

    Article  Google Scholar 

  • Lea FM, Hewlett PC (2004) Lea’s chemistry of cement and concrete, 4th edn. Oxford, United Kingdom

  • Lepistö L, Antikainen S, Kivinen J (1994) The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273:1–8. doi:10.1007/BF00126764

    Article  Google Scholar 

  • Leppelt T, Dechow R, Gebbert S, Freibauer A, Lohila A, Augustin J, Drösler M, Fiedler S, Glatzel S, Höper H, Järveoja J, Lærke PE, Maljanen M, Mander Ü, Mäkiranta P, Minkkinen K, Ojanen P, Regina K, Strömgren M (2014) Nitrous oxide emission hotspots from organic soils in Europe. Biogeosciences 11:6595–6612. doi:10.5194/bg-11-6595-2014

    Article  Google Scholar 

  • Linton PE, Shotbolt L, Thomas AD (2007) Microbial communities in long-term heavy metal contaminated ombrotrophic peats. Water Air Soil Pollut 186:97–113. doi:10.1007/s11270-007-9468-z

    Article  CAS  Google Scholar 

  • Liu H, Wang J, Wang A, Chen J (2011) Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 89:1333–1340. doi:10.1007/s00253-010-3066-5

    Article  CAS  Google Scholar 

  • Loomis D, Huang W, Chen G (2014) The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer 33:189–196. doi:10.5732/cjc.014.1002

    Article  CAS  Google Scholar 

  • MacDonald GM, Beilman DW, Kremenetski KV, Sheng Y, Smith LC, Velichko AA (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:285–288. doi:10.1126/science.1131722

    Article  CAS  Google Scholar 

  • Maileht K, Nõges T, Nõges P, Ott I, Mischke U, Carvalho L, Dudley B (2013) Water colour, phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in European lakes. Hydrobiologia 704:115–126. doi:10.1007/s10750-012-1348-x

    Article  CAS  Google Scholar 

  • Mander Ü, Uuemaa E, Kull A, Kanal A, Maddison M, Soosaar K, Salm J-O, Lesta M, Hansen R, Kuller R, Harding A, Augustin J (2010) Assessment of methane and nitrous oxide fluxes in rural landscapes. Landsc Urban Plan 98:172–181. doi:10.1016/j.landurbplan.2010.08.021

    Article  Google Scholar 

  • Mander Ü, Maddison M, Soosaar K, Teemusk A, Kanal A, Uri V, Truu J (2015) The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands. Environ Sci Pollut Res 22:2360–2371. doi:10.1007/s11356-014-3427-1

    Article  CAS  Google Scholar 

  • Marcé R, Obrador B, Morguí J-A, Riera JL, López P, Armengol J (2015) Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat Geosci 8:107–111. doi:10.1038/ngeo2341

    Article  CAS  Google Scholar 

  • Martikainen PJ, Nykänen H, Crill P, Silvola J (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366:51–53. doi:10.1038/366051a0

    Article  CAS  Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869. doi:10.1016/S0140-6736(06)68079-3

    Article  Google Scholar 

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Chang Biol 10:530–544. doi:10.1111/j.1365-2486.2004.00763.x

    Article  Google Scholar 

  • Mishra SR, Kollah B, Sethunathan N, Adhya T (1999) Effects of heavy metals on methane production in tropical rice soils. Ecotoxicol Environ Saf 44:129–136. doi:10.1006/eesa.1999.1809

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. John Wiley and Sons, Hoboken

    Google Scholar 

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson L, Jørgensen SE, Brix H (2013) Wetlands, carbon, and climate change. Landsc Ecol 28:583–597. doi:10.1007/s10980-012-9758-8

    Article  Google Scholar 

  • Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M (2013) Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem 32:49–61. doi:10.1002/etc.2045

    Article  CAS  Google Scholar 

  • Monteith DL, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–541. doi:10.1038/nature06316

    Article  CAS  Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566. doi:10.1146/annurev.ecolsys.29.1.543

    Article  Google Scholar 

  • Moss B, Kosten S, Meerhoff M, Battarbee RW, Jeppesen E, Mazzeo N, Havens K, Lacerot G, Liu Z, De Meester L, Paerl H, Scheffer M (2011) Allied attack: climate change and eutrophication. Inland Waters 1:101–105. doi:10.5268/IW-1.2.359

    Article  Google Scholar 

  • Mueller P, Jensen K, Megonigal JP (2016) Plants mediate soil organic matter decomposition in response to sea level rise. Glob Chang Biol 22:404–414. doi:10.1111/gcb.13082

    Article  Google Scholar 

  • Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–1013. doi:10.1007/s10021-015-9879-4

    Article  Google Scholar 

  • Nieminen T, Helmisaari H-S (1996) Nutrient retranslocation in the foliage of Pinus sylvestris L. growing along a heavy metal pollution gradient. Tree Physiol 16:825–831. doi:10.1093/treephys/16.10.825

    Article  CAS  Google Scholar 

  • Niemistö JP, Horppila J (2007) The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading. J Environ Qual 36:1318–1323. doi:10.2134/jeq2006.0487

    Article  CAS  Google Scholar 

  • Niinemets Ü, Portsmuth A, Truus L (2002) Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species. Ann Bot 89:191–204. doi:10.1093/aob/mcf025

    Article  CAS  Google Scholar 

  • Niinemets Ü, Kahru A, Mander Ü, Nõges P, Nõges T, Tuvikene A, Vasemägi A (2017) Interacting environmental and chemical stresses under global change in temperate aquatic ecosystems: stress responses, adaptation and scaling. Reg Environ Change. doi:10.1007/s10113-017-1196-3

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus 63A:41–55. doi:10.1111/j.1600-0870.2010.00466.x

    Article  Google Scholar 

  • Nõges T (ed) (2001) Lake Peipsi. Hydrology. Meteorology. Hydrochemistry. Sulemees, Tallinn

    Google Scholar 

  • Nõges T (2004) Reflection of the changes of the North Atlantic oscillation index and the Gulf stream position index in the hydrology and phytoplankton of Võrtsjärv, a large, shallow lake in Estonia. Boreal Environ Res 9:401–407

    Google Scholar 

  • Nõges P, Nõges T (2012) Võrtsjärv Lake in Estonia. In: Bengtsson L, Herschy RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. Springer Science+Business Media, Berlin, pp 850–861. doi:10.1007/978-1-4020-4410-6_228

    Google Scholar 

  • Nõges P, Nõges T (2014) Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia 731:5–18. doi:10.1007/s10750-013-1572-z

    Article  Google Scholar 

  • Nõges T, Nõges P, Jolma A, Kaitaranta J (2009) Impacts of climate change on physical characteristics of lakes in Europe. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra. doi:10.2788/41235

    Google Scholar 

  • Nõges P, Nõges T, Laas A (2010) Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv, Estonia. Aquat Ecosyst Health Manag 13:154–163. doi:10.1080/14634981003788953

    Article  CAS  Google Scholar 

  • Nõges P, Argillier C, Borja Á, Garmendia JM, Hanganu J, Kodeš V, Pletterbauer F, Sagouis A, Birk S (2016a) Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci Total Environ 540:43–52. doi:10.1016/j.scitotenv.2015.06.045

    Article  CAS  Google Scholar 

  • Nõges P, Cremona F, Laas A, Martma T, Rõõm E-I, Toming K, Viik M, Vilbaste S, Nõges T (2016b) Role of a productive lake in carbon sequestration within a calcareous catchment. Sci Total Environ 550:225–230. doi:10.1016/j.scitotenv.2016.01.088

    Article  CAS  Google Scholar 

  • Norberg J (1998) Effects of temperature and light on the composition of brackish-water rock pool ecosystems. Aquat Ecol 32:323–334. doi:10.1023/A:1009947928529

    Article  CAS  Google Scholar 

  • Nørgaard KB, Cedergreen N (2010) Pesticide cocktails can interact synergistically on aquatic crustaceans. Environ Sci Pollut Res Int 17:957–967. doi:10.1007/s11356-009-0284-4

    Article  CAS  Google Scholar 

  • Noyes PD, Lema SC (2015) Forecasting the impacts of chemical pollution and climate change interactions on the health of wildlife. Curr Zool 61:669–689. doi:10.1093/czoolo/61.4.669

    Article  Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986. doi:10.1016/j.envint.2009.02.006

    Article  CAS  Google Scholar 

  • O’Connor FM, Boucher O, Gedney N, Jones CD, Folberth GA, Coppell R, Friedlingstein P, Collins WJ, Chapellaz J, Ridley J, Johnson CE (2010) Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: a review. Rev Geophys 48:RG4005. doi:10.1029/2010RG000326

    Google Scholar 

  • Omar WMW (2010) Perspectives on the use of algae as biological indicators for monitoring and protecting aquatic environments, with special reference to Malaysian freshwater ecosystems. Trop Life Sci Res 21:51–67

    Google Scholar 

  • Opriş O, Copaciu F, Soran ML, Ristoiu D, Niinemets Ü, Copolovici L (2013) Influence of nine antibiotics on key secondary metabolites and physiological characteristics in Triticum aestivum: leaf volatiles as a promising new tool to assess toxicity. Ecotoxicol Environ Saf 87:70–79. doi:10.1016/j.ecoenv.2012.09.019

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58. doi:10.1126/science.1155398

    Article  CAS  Google Scholar 

  • Pärn J, Aasa A, Egorov S, Filippov I, Gabiri G, Gheorghe I, Järveoja J, Kasak K, Laggoun-Défarge F, Luswata C, Maddison M, Mitsch W, Óskarsson H, Pellerin S, Salm J-O, Sohar K, Soosaar K, Teemusk A, Tenywa M, Villa J, Vohla C, Mander Ü (2015) Global boundary lines of N2O and CH4 emission in peatlands. In: Vymazal J (ed) The role of natural and constructed wetlands in nutrient cycling and retention on the landscape. Springer International Publishing, Třeboň, pp 87–102. doi:10.1007/978-3-319-08177-9_7

    Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (2007) Climate Change 2007—impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, New York

    Google Scholar 

  • Patra RW, Chapman JC, Lim RP, Gehrke PC, Sunderam RM (2015) Interactions between water temperature and contaminant toxicity to freshwater fish. Environ Toxicol Chem 34:1809–1817. doi:10.1002/etc.2990

    Article  CAS  Google Scholar 

  • Paudel R, Mahowald NM, Hess PGM, Meng L, Riley WJ (2016) Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environ Res Lett 11:034020. doi:10.1088/1748-9326/11/3/034020

    Article  CAS  Google Scholar 

  • Portsmuth A, Niinemets Ü, Truus L, Pensa M (2005) Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Can J For Res 35:2346–2359. doi:10.1139/X05-155

    Article  CAS  Google Scholar 

  • Potter CS, Davidson EA, Verschot LV (1996) Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere 32:2219–2246. doi:10.1016/0045-6535(96)00119-1

    Article  CAS  Google Scholar 

  • Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Matson P, Midgley P, Wang M (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 239–287

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993-2000. J Geophys Res 112:D12107. doi:10.1029/2006JD007847

    Article  Google Scholar 

  • Psenner R (2003) Alpine lakes: extreme ecosystems under the pressure of global change. EAWAG News 55:12–14

    Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3:311–314. doi:10.1038/ngeo838

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Alfons JP, Smolders AJP, Schmid MC, Rijpstra WIC, Wolters-Arts M, Derksen J, Jetten MSM, Schouten S, Damste JSS, Lamers LPM, Roelofs JGM, Op den Camp HJM, Strous M (2005) Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436:1153–1156. doi:10.1038/nature03802

    Article  CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Duerr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi:10.1038/nature12760

    Article  CAS  Google Scholar 

  • Reible DD (2014) Processes, assessment and remediation of contaminated sediments. Springer, Berlin. doi:10.1007/978-1-4614-6726-7

    Book  Google Scholar 

  • Reintam L, Rooma I, Kull A, Kõlli R (2005) Soil information and its application in Estonia. In: Jones RJA, Houšková B, Bullock P, Montanarella L (eds) Soil resources of Europe, 2nd edn., Research Report No 9, EUR 20559 EN. European Soil Bureau, Oxford, United Kingdom, p 121–132

  • Rengefors K, Weyhenmeyer GA, Bloch I (2012) Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18:65–73. doi:10.1016/j.hal.2012.04.005

    Article  Google Scholar 

  • Rezanezhad F, Price JS, Quinton WL, Lennartz B, Milojevic T, Van Cappellen P (2016) Structure of peat soils and implications for water storage, flow and solute transport: a review update for geochemists. Chem Geol 429:75–84. doi:10.1016/j.chemgeo.2016.03.010

    Article  CAS  Google Scholar 

  • Ridgwell AJ, Marshall SJ, Gregson K (1999) Consumption of atmospheric methane by soils: a process-based model. Glob Biogeochem Cycles 13:59–70. doi:10.1029/1998GB900004

    Article  CAS  Google Scholar 

  • Roulet N, Moore TR (2006) Environmental chemistry—browning the waters. Nature 444:283–284. doi:10.1038/444283a

    Article  CAS  Google Scholar 

  • Schiedek D, Sundelin B, Readman JW, Macdonald RW (2007) Interactions between climate change and contaminants. Mar Pollut Bull 54:1845–1856. doi:10.1016/j.marpolbul.2007.09.020

    Article  CAS  Google Scholar 

  • Schimel D, Pavlick R, Fisher JB, Asner GP, Saatchi S, Townsend P, Miller C, Frankenberg C, Hibbard K, Cox P (2015) Observing terrestrial ecosystems and the carbon cycle from space. Glob Chang Biol 21:1762–1776. doi:10.1111/gcb.12822

    Article  Google Scholar 

  • Schindler DW (2001) The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can J Fish Aquat Sci 58:8–29. doi:10.1139/f00-179

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJ, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  CAS  Google Scholar 

  • Schwartz D, Collins F (2007) Environmental biology and human disease. Science 316:695–696. doi:10.1126/science.1141331

    Article  CAS  Google Scholar 

  • Sha CY, Mitsch WJ, Mander Ü, Lu JJ, Batson J, Zhang L, He WS (2011) Methane emissions from freshwater riverine wetlands. Ecol Eng 37:16–24. doi:10.1016/j.ecoleng.2010.07.022

    Article  Google Scholar 

  • Sihtmäe M, Blinova I, Künnis-Beres K, Kanarbik L, Heinlaan M, Kahru A (2013) Ecotoxicological effects of different glyphosate formulations. Appl Soil Ecol 72:215–224. doi:10.1016/j.apsoil.2013.07.005

    Article  Google Scholar 

  • Smith B, Aasa A, Ahas R, Blenckner T, Callaghan T, de Chazal J, Humborg C, Jönsson AM, Kellomäki S, Kull A, Lehikoinen E, Mander Ü, Nõges P, Nõges T, Rounsevell M, Sofiev M, Tryjanowski P, Wolf A (2008) Climate-related change in terrestrial and freshwater ecosystems. In: The BACC Author Team (ed) Assessment of climate change for the Baltic Sea basin. Regional climate studies. Springer-Verlag, Berlin, pp 221–308. doi:10.1007/978-3-540-72786-6_4

  • Sobek S, Algesten G, Bergström A-K, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO2 in boreal lakes. Glob Chang Biol 9:630–641. doi:10.1046/j.1365-2486.2003.00619.x

    Article  Google Scholar 

  • Sobek S, Söderbäck B, Karlsson S, Andersson E, Brunberg AK (2006) A carbon budget of a small humic lake: an example of the importance of lakes for organic matter cycling in boreal catchments. Ambio 35:469–475. doi:10.1579/0044-7447(2006)35[469:ACBOAS]2.0.CO;2

    Article  CAS  Google Scholar 

  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–1219. doi:10.4319/lo.2007.52.3.1208

    Article  CAS  Google Scholar 

  • Stanley JK, Biedenbach JM, Russell AL, Bednar AJ (2014) Algal growth stimulation and toxicity in response to exposure to the new insensitive military high-nitrogen energetic triaminoguanidinium-1-methyl-5-nitriminotetrazolate. Environ Toxicol Chem 33:616–620. doi:10.1002/etc.2473

    Article  CAS  Google Scholar 

  • Stets EG, Striegl RG, Aiken GR, Rosenberry DO, Winter TC (2009) Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. J Geophys Res 114:G01008. doi:10.1029/2008JG000783

    Article  CAS  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Climate Change 2014: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Straile D (2002) North Atlantic oscillation synchronizes food-web interactions in central European lakes. Proc R Soc Lond B Biol Sci 269:391–395. doi:10.1098/rspb.2001.1907

    Article  Google Scholar 

  • Straile A, Adrian R (2000) The North Atlantic oscillation and plankton dynamics in two European lakes - two variations on a general theme. Glob Chang Biol 6:663–670. doi:10.1046/j.1365-2486.2000.00350.x

    Article  Google Scholar 

  • The BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Regional climate studies. Springer Verlag, Berlin. doi:10.1007/978-3-540-72786-6

    Book  Google Scholar 

  • The BACC II Author Team (2015) Second assessment of climate change for the Baltic Sea basin. Springer, Berlin. doi:10.1007/978-3-319-16006-1

    Book  Google Scholar 

  • Tipping E (2002) Cation binding by humic substances. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Toming K, Tuvikene L, Vilbaste S, Agasild H, Viik M, Kisand A, Feldmann T, Martma T, Jones RI, Nõges T (2013) Contributions of autochthonous and allochthonous sources to dissolved organic matter in a large, shallow, eutrophic lake with a highly calcareous catchment. Limnol Oceanogr 58:1259–1270. doi:10.4319/lo.2013.58.4.1259

    Article  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser TLS, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer G (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314. doi:10.4319/lo.2009.54.6_part_2.2298

    Article  CAS  Google Scholar 

  • Turetsky MR, Benscoter B, Page S, Rein G, van der Werf G, Watts A (2015) Global vulnerability of peatlands to fire and carbon loss. Nat Geosci 8:11–14. doi:10.1038/ngeo2325

    Article  CAS  Google Scholar 

  • Ukonmaanaho L, Nieminen TM, Rausch N, Shotyk W (2004) Heavy metal and arsenic profiles in ombrogenous peat cores from four differently loaded areas in Finland. Water Air Soil Pollut 158:277–294. doi:10.1023/B:WATE.0000044860.70055.32

    Article  CAS  Google Scholar 

  • US EPA (2010) Methane and nitrous oxide emissions from natural sources EPA 430-R-10-001. United States Environmental Protection Agency, Office of Atmospheric Programs, Washington

    Google Scholar 

  • Vasander H, Tuittila E-S, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R, Pitkänen M-L, Laine J (2003) Status and restoration of peatlands in northern Europe. Wetl Ecol Manag 11:51–63. doi:10.1023/A:1022061622602

    Article  CAS  Google Scholar 

  • Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A (2006) Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res 111:D11101. doi:10.1029/2005JD006365

    Article  CAS  Google Scholar 

  • Walter BP, Heimann M (2000) A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob Biogeochem Cycles 14:745–765. doi:10.1029/1999GB001204

    Article  CAS  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. doi:10.1038/nature05040

  • Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin FS (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:633–636. doi:10.1126/science.1142924

    Article  CAS  Google Scholar 

  • Wang S, Liu C, Yeager KM, Wan G, Li J, Tao F, Lǚ Y, Liu F, Fan C (2009) The spatial distribution and emission of nitrous oxide (N2O) in a large eutrophic lake in eastern China: anthropogenic effects. Sci Total Environ 407:3330–3337. doi:10.1016/j.scitotenv.2008.10.037

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700. doi:10.1016/j.envint.2003.11.002

    Article  CAS  Google Scholar 

  • Weiss J (2014) Osmoregulation and excretion. In: Cheronet A (ed) Physiological, developmental and behavioral effects of marine pollution. Springer, Dordrecht, pp 97–124. doi:10.1007/978-94-007-6949-6_4

    Chapter  Google Scholar 

  • Werner C, Kiese R, Butterbach-Bahl K (2007) Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya. J Geophys Res 112:D03308. doi:10.1029/2006JD007388

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA (2001) Warmer winters—are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30:565–571. doi:10.1579/0044-7447-30.8.565

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA, Blenckner T, Pettersson K (1999) Changes of the plankton spring outburst related to the North Atlantic oscillation. Limnol Oceanogr 44:1788–1792. doi:10.4319/lo.1999.44.7.1788

    Article  Google Scholar 

  • Weyhenmeyer GA, Kosten S, Wallin MB, Tranvik LJ, Jeppesen E, Roland F (2015) Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nat Geosci 8:933–936. doi:10.1038/ngeo2582

    Article  CAS  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635. doi:10.1080/0735-260291044386

    Article  CAS  Google Scholar 

  • Williamson CE, Dodds W, Kratz TK, Palmer MA (2008) Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Front Ecol Environ 6:247–254. doi:10.1890/070140

    Article  Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinals, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282. doi:10.4319/lo.2009.54.6_part_2.2273

    Article  Google Scholar 

  • Winter LT, Foster IDL, Charlesworth SM, Lees JA (2001) Floodplain lakes as sinks for sediment-associated contaminants—a new source of proxy hydrological data? Sci Total Environ 266:187–194. doi:10.1016/S0048-9697(00)00745-2

    Article  CAS  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B 365:2093–2106. doi:10.1098/rstb.2010.0055

    Article  Google Scholar 

  • Youssef RA, Chino M (1989) Root-induced changes in the rhizosphere of plants.2. Distribution of heavy metals across the rhizosphere in soils. Soil Sci Plant Nutr 35:609–621. doi:10.1080/00380768.1989.10434779

    Article  CAS  Google Scholar 

  • Yvon-Durocher G, Allen A, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Nguyen T-D, del Giorgio PA (2000) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491. doi:10.1038/nature13164

    Article  CAS  Google Scholar 

  • Zayed G, Winter J (2000) Inhibition of methane production from whey by heavy metals-protective effect of sulfide. Appl Microbiol Biotechnol 53:726–731. doi:10.1007/s002530000336

    Article  CAS  Google Scholar 

  • Zhang L, Wang WX (2007) Waterborne cadmium and zinc uptake in a euryhaline teleost Acanthopagrus schlegeli acclimated to different salinities. Aquat Toxicol 84:173–181. doi:10.1016/j.aquatox.2007.03.027

    Article  CAS  Google Scholar 

  • Zhu D, Wu Y, Wu N, Chen H, He YC, Zhang YM, Peng CH, Zhu QA (2015) Nitrous oxide emission from infralittoral zone and pelagic zone in a shallow lake: implications for whole lake flux estimation and lake restoration. Ecol Eng 82:368–375. doi:10.1016/j.ecoleng.2015.05.032

    Article  Google Scholar 

  • Zona D, Gioli B, Commane R, Lindaas J, Wofsy SC, Miller CE, Dinardo SJ, Dengel S, Sweeney C, Karion A, Chang RY-W, Henderson JM, Murphy PC, Goodrich JP, Moreaux V, Liljedahl A, Watts JD, Kimball JS, Lipson DA, Oechel WC (2016) Cold season emissions dominate the Arctic tundra methane budget. Proc Natl Acad Sci USA 113:40–45. doi:10.1073/pnas.1516017113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors work on global change has been supported by the Estonian Research Council (institutional grants IUT 2-16, IUT 8-3, IUT 8-2, IUT 21-2, and IUT 23-5), Academy of Finland, and the European Commission through the European Regional Development Fund (Centers of Excellence ENVIRON and EcolChange, TK 131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülo Niinemets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niinemets, Ü., Kahru, A., Nõges, P. et al. Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors?. Reg Environ Change 17, 2079–2096 (2017). https://doi.org/10.1007/s10113-017-1197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-017-1197-2

Keywords

Navigation