Skip to main content

Advertisement

Log in

A framework for habitat monitoring and climate change modelling: construction and validation of the Environmental Stratification of Estonia

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in Estonia has been the lack of a framework for the objective selection of monitoring sites. This paper describes the construction and testing of the Environmental Stratification of Estonia (ESE). Principal components analysis was used to select the variables that capture the most amount of variation. Seven climate variables and topography were selected and subsequently subjected to the ISODATA clustering routine in order to produce relatively homogeneous environmental strata. The ESE contains eight strata, which have been described in terms of soil, land cover and climatic parameters. In order to assess the reliability of the stratification procedure for the selection of monitoring sites, the ESE was compared with the previous map of Landscape Regions of Estonia and correlated with five environmental data sets. All correlations were significant. The stratification has therefore already been used to extend the current series of samples in agricultural landscapes into a more statistically robust series of monitoring sites. The potential for applying climate change scenarios to assess the shifts in the strata and associated ecological impacts is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arold I (2005) Estonian landscapes. University of Tartu, Tartu

    Google Scholar 

  • Bakkestuen V, Erikstad L, Halvorsen R (2008) Step-less models for regional environmental variation in Norway. J Biogeogr 35:1906–1922. doi:10.1111/j.1365-2699.2008.01941.x

    Article  Google Scholar 

  • Barr CJ (2011) The sampling strategy for countryside survey (up to 2007). CEH Lancaster, Lancaster

    Google Scholar 

  • Barredo JI, San Miguel J, Caudullo G, Busetto L (2012) A European map of living forest biomass and carbon stock. Joint Res Cent Eur Comm Ispra, Executive report. doi:10.2788/780

    Google Scholar 

  • Berry PM, Dawson TP, Harrison PA, Pearson R, Butt N (2003) The sensitivity and vulnerability of terrestrial habitats and species in Britain and Ireland to climate change. J Nat Conserv 11:15–23. doi:10.1078/1617-1381-00030

    Article  Google Scholar 

  • Breckle SW, Walter H (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Brus DJ, Knotters M, Metzger MJ, Walvoort DJJ (2011) Towards a European-wide sampling design for statistical monitoring of common habitats. Alterra report 2213, Wageningen

  • Bugter RFJ, Ottburg FGWA, Roessink I, Jansman HAH, Van der Grift EA, Griffioen AJ (2011) Invasion of the turtles? Exotic turtles in the Netherlands: a risk assessment. Alterra report 2186. Alterra Wageningen UR. http://www.wageningenur.nl/en/Publication-details.htm?publicationId=publication-way-343039323632. Accessed 17 Mar 2015

  • Bunce RGH, Smith RS (1978) An ecological survey of Cumbria. Kendal (UK): Cumbria County Council and Lake District Special Planning Board

    Google Scholar 

  • Bunce RGH, Morrel SK, Stel HE (1975) The application of multivariate analysis to regional survey. J Environ Manag 3:151–165

    Google Scholar 

  • Bunce RGH, Barr CJ, Clarke RT, Howard DC, Lane AMJ (1996) Land classification for strategic ecological survey. J Environ Manag 47:37–60. doi:10.1006/jema.1996.0034

    Article  Google Scholar 

  • Bunce RGH, Carey PD, Elena-Rosello R, Orr J, Watkins J, Fuller R (2002) A comparison of different biogeographical classifications of Europe, Great Britain and Spain. J Environ Manag 65:12–134. doi:10.1006/jema.2002.0533

    Article  Google Scholar 

  • Carvalho SB, Gonçalves J, Guisan A, Honrado JP (2015) Systematic site selection for multispecies monitoring networks. J Appl Econ. doi:10.1111/1365-2664.12505

    Google Scholar 

  • Cooper A (2000) Land cover monitoring in Northern Ireland. In: Rushton BS (ed) Biodiversity: the Irish dimension. Royal Irish Academy, Dublin, pp 122–131

    Google Scholar 

  • de Gruijter JJ, Brus DJ, Bierkens MFP, Knotters M (2006) Sampling for natural resource monitoring. Springer, Berlin

    Book  Google Scholar 

  • EEA (2000) Corine land cover technical guide—addendum 2000. Report no. 40. European Environment Agency, Copenhagen

  • Elena-Rosselló R (1997) Biogeoclimatic classification of the Spanish regions of Iberian Peninsula and Balearic islands. Ministry of Agriculture, Fisheries and Food, Madrid (in Spanish)

    Google Scholar 

  • European Commission (2004) The European soil database distribution version 2.0 (CD-ROM) European Commission and the European Soil Bureau Network. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/index.htm. Accessed 17 Mar 2015

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51(2):331–363. doi:10.1080/10635150252899806

    Article  Google Scholar 

  • Fňukalová E, Romportl D (2014) A typology of natural landscapes of Central Europe. AUC Geogr 49(2):57–63. doi:10.14712/23361980.2014.15

    Article  Google Scholar 

  • Fuchs R, Herold M, Verburg PH, Clevers JGPW (2013) A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10:1543–1559. doi:10.5194/bg-10-1543-2013

    Article  Google Scholar 

  • Godron M (1994) The natural hierarchy of ecological systems. In: Klijn F (ed) Ecosystem classification for environmental management. Kluwer Academic Publishers, Dortdrecht, pp 69–83

    Chapter  Google Scholar 

  • Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17(3):235–249. doi:10.1080/13658810210157822

    Article  Google Scholar 

  • Haines-Young RH, Barr CJ, Black HIJ, Briggs DJ, Bunce RGH, Clarke RT, Cooper A, Dawson FH, Firbank LG, Fuller R, Furse MT, Gillespie MK, Hill R, Hornung M, Howard DC, McCann T, Morecroft MD, Petit S, Sier ARJ, Smart SM, Smith GM, Stott AP, Stuart R, Watkins JW (2000) Accounting for nature: assessing habitats in the UK countryside. DETR, London

    Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res (Atmospheres) 113:D20119. doi:10.1029/2008JD10201

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Jaagus J, Kaupo M (2015) Climate change scenarios for Estonia based on climate models from the IPCC fourth assessment report. Est J Earth Sci 63(3):166–180. doi:10.3176/earth.2014.15

    Article  Google Scholar 

  • Jolliffe IT (1972) Discarding variables in a principal component analysis I: artificial data. J Roy Stat Soc C-Appl 21(2):160–173. doi:10.2307/2346488

    Google Scholar 

  • Jones HE, Bunce RGH (1985) A preliminary classification of the climate of Europe from temperature and precipitation records. J Environ Manag 20:17–29

    Google Scholar 

  • Jones RJA, Hiederer R, Rusco E, Loveland PJ, Montanarella L (2004) The map of organic carbon in topsoils in Europe, version 1.2, September 2003: Explanation of special publication. Ispra 2004 no.72 (S.P.I.04.72). Office for Official Publications of the European Communities. http://139.191.1.96/ESDB_Archive/octop/OCtopMapBkLet76.pdf. Accessed 17 Mar 2015

  • Jongman RHG, Bunce RGH, Metzger MJ, Mücher CA, Howard DC, Mateus VL (2006) A statistical environmental stratification of Europe: objectives and applications. Land Ecol 21:409–419. doi:10.1007/s10980-005-6428-0

    Article  Google Scholar 

  • King JR, Jackson DA (1999) Variable selection in large environmental data sets using principal components analysis. Environmetrics 10:67–77. doi:10.1002/(sici)1099-095x(199901/02)10:1<67::aid-env3363.0.co;2-0

    Article  Google Scholar 

  • Klijn F, de Haes HAU (1994) A hierarchical approach to ecosystems and its implications for ecological land classification. Land Ecol 9(2):89–104. doi:10.1007/BF00124376

    Article  Google Scholar 

  • Klotz M, Kemper T, Geiß C, Esch T, Taubenböck H (2016) How good is the map? A multi-scale cross-comparison framework for global settlement layers: evidence from Central Europe. Remote Sens Environ 178:191–212. doi:10.1016/j.rse.2016.03.001

    Article  Google Scholar 

  • Krzanowski WJ (1987) Selection of variables to preserve multivariate data structure, using principal components. J Roy Stat Soc C-Appl 36(1):22–33. doi:10.2307/2347842

    Google Scholar 

  • Kukk T, Kull T (2005) Atlas of the Estonian flora. Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Tartu (in Estonian)

    Google Scholar 

  • Kull T, Kukk T, Leht M, Krall H, Kukk Ü, Kull K, Kuusk V (2002) Distribution trends of rare vascular plant species in Estonia. Biodivers Conserv 11:171–196. doi:10.1023/A:1014564521151

    Article  Google Scholar 

  • Laasimer L (1965) Plant cover of Estonian. S. S. R. Valgus, Tallinn (in Estonian)

    Google Scholar 

  • Landis JR, Koch GC (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi:10.2307/2529310

    Article  CAS  Google Scholar 

  • Leito A, Bunce RGH, Külvik M, Ojaste I, Raet J, Villoslada M, Leivits M, Kull A, Kuusemets V, Kull T, Metzger MJ, Sepp K (2015) The potential impacts of changes in ecological networks, land use and climate on the Eurasian crane population in Estonia. Land Ecol 30(5):887–904. doi:10.1007/s10980-015-0161-0

    Article  Google Scholar 

  • Liivamägi A, Kuusemets V, Luig J, Kask K (2013) Changes in the distribution of Clouded Apollo Parnassius mnemosyne (Lepidoptera: Papilionidae) in Estonia. Entomol Fennica 24(3):186–192

    Google Scholar 

  • Lippmaa T (1935) Main features of Estonian geobotany. University of Tartu, Tartu (in Estonian)

    Google Scholar 

  • Luhamaa A, Kallis A, Mändla K, Männik A, Pedusaar T, Rosin K (2014) Eesti tuleviku kliima stsenaariumid aastani 2100. Estonian Environment Agency

  • Mander Ü, Palang H (1994) Changes of landscape structure in Estonia during the Soviet period. GeoJournal 33(1):45–54. doi:10.1007/BF00810135

    Article  Google Scholar 

  • Mateus VL (2004) Countryside land cover: strategic sample survey. Universidade de Évora, Évora

    Google Scholar 

  • McCabe GP (1984) Principal variables. Technometrics 26(2):137–144. doi:10.1080/00401706.1984.10487939

    Article  Google Scholar 

  • Memarsadeghi N, Mount DM, Netanyahu NS, le Moigne J (2007) A fast implementation of the Isodata clustering algorithm. Int J Comput Geom Appl 17(1):71–103

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563. doi:10.1111/j.1466-822X.2005.00190.x

    Article  Google Scholar 

  • Metzger MJ, Rounsevell MDA, Leemans R, Schröter D (2006) The vulnerability of ecosystem services to land use change. Agr Ecosyst Environ 114:69–85. doi:10.1016/j.agee.2005.11.025

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35(1):64–75. doi:10.1017/S0376892908004529

    Article  Google Scholar 

  • Metzger MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R (2012) A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecol Biogeogr 22(5):630–638. doi:10.1111/geb.12022

    Article  Google Scholar 

  • Metzger MJ, Brus DJ, Bunce RGH, Carey PD, Gonçalves J, Honrado JP, Jongman RHG, Trabucco A, Zomer R (2013) Environmental stratifications as the basis for national, European and global ecological monitoring. Ecol Indic 33:26–35. doi:10.1016/j.ecolind.2012.11.009

    Article  Google Scholar 

  • Mücher CA, Hennekens SM, Bunce RGH, Schaminée JHJ, Schaepman ME (2009) Modelling the spatial distribution of Natura 2000 habitats across Europe. Land Urb Plan 92(2):148–159. doi:10.1016/j.landurbplan.2009.04.003

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries HJM, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger ME, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios, international panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25. doi:10.3354/cr021001

    Article  Google Scholar 

  • Ortega M, Metzger MJ, Bunce RGH, Wrbka T, Allard A, Jongman RHG, Elena-Roselló R (2011) The potential for integration of environmental data from regional stratifications into a European monitoring framework. J Environ Plann Man 55(1):39–57. doi:10.1080/09640568.2011.575698

    Article  Google Scholar 

  • Palo A, Linder M, Truu J, Mander Ü (2008) The influence of biophysical factors and former land use on forest floristic variability on Saaremaa and Muhu islands, Estonia. J Nat Conserv 16:123–134. doi:10.1016/j.jnc.2008.08.001

    Article  Google Scholar 

  • Panagos P, Borrelli P, Meusburger B, Alewell C, Lugato E, Montanarella L (2015) Estimating the soil erosion cover-management factor at European scale. Land Use Policy 48(c):38–50. doi:10.1016/j.landusepol.2015.05.021

    Article  Google Scholar 

  • Peterseil J, Wrbka T, Plutzar C, Schmitzberger I, Kiss A, Szerencsits E, Reiter K, Schneider W, Suppan F, Beissmann H (2004) Evaluating the ecological sustainability of Austrian agricultural landscapes-the SINUS approach. Land Use Pol 21:307–320. doi:10.1016/j.landusepol.2003.10.011

    Article  Google Scholar 

  • Petit S, Firbank L, Wyatt B, Howard D (2001) MIRABEL: models for integrated review and assessment of biodiversity in European landscapes. Ambio 30:81–88. doi:10.1579/0044-7447-30.2.81

    Article  CAS  Google Scholar 

  • Regato P, Castejón M, Tella G, Giménez S, Barrera I, Elena-Rosselló R (1999) Cambios recientes en los paisajes de los sistemas forestales de España. Investig Agric Sist Recur For 1:383–398

    Google Scholar 

  • Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8:53–60. doi:10.1111/j.1461-0248.2004.00694.x

    Article  Google Scholar 

  • Sheail J, Bunce RGH (2003) The development and scientific principles of an environmental classification for strategic ecological survey in Great Britain. Environ Conserv 30:147–159. doi:10.1017/S0376892903000134

    Article  Google Scholar 

  • Ståhl G, Allard A, Esseen PA, Glimskär A, Ringvall A, Svensson J, Sture Sundquist S, Christensen P, Gallegos Torell Å, Högström M, Lagerqvist K, Marklund L, Nilsson B, Inghe O (2011) National inventory of landscapes in Sweden (NILS)—scope, design, and experiences from establishing a multi-scale biodiversity monitoring system. Environ Monit Assess 173:579–595. doi:10.1007/s10661-010-1406-7

    Article  Google Scholar 

  • Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradients analysis. Ecology 67(5):1167–1179. doi:10.2307/1938672

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer power, Ithaca, New York

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Pant Ecol 9:137–152. doi:10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Tou JT, Gonzalez RC (1974) Pattern recognition principles. Addison-Wesley Publishing Company, Massachusetts

    Google Scholar 

  • Van der Sluis T, Pedroli B, Kristensen SBP, Lavinia Cosor G, Pavlis E (2015) Changing land use intensity in Europe—recent processes in selected case studies. Land Use Policy. doi:10.1016/j.landusepol.2014.12.005

    Google Scholar 

  • Visser H (2004) The map comparison kit: methods, software and applications. RIVM report 550002005/2004. RIVM (National Institute for Public Health and the Environment, the Netherlands). http://www.pbl.nl/sites/default/files/cms/publicaties/550002005.pdf. Accessed 17 Mar 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Villoslada.

Additional information

Editor: Wolfgang Cramer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villoslada, M., Bunce, R.G.H., Sepp, K. et al. A framework for habitat monitoring and climate change modelling: construction and validation of the Environmental Stratification of Estonia. Reg Environ Change 17, 335–349 (2017). https://doi.org/10.1007/s10113-016-1002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-1002-7

Keywords

Navigation