Skip to main content

Advertisement

Log in

Identifying areas sensitive to land use/land cover change for downstream flooding in a coastal Alabama watershed

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This paper explored the linkage between historic, current and future land use/land cover (LULC) conditions and peak flow and runoff volumes in a coastal community in Alabama in an effort to identify critical areas for downstream flooding. The study demonstrated that critical areas cannot be determined intuitively without conducting modeling studies. The study watershed, Eightmile Creek, experienced approximately 48 % forest loss between 1966 and 2011 largely due to urbanization. Residential development is expected to continue mostly in the central part of the watershed in the near future. Historic, current and future LULC maps were developed by processing aerial imagery, which were used in the HEC-HMS hydrologic model to study flood risk. An index method was applied to estimate the contribution of different parts of the watershed to downstream peak flows. The model showed a significant increase in peak flow and runoff volume from 1966 to 2011 and from 2011 to 2022 due to urbanization. The sensitivity of peak flows to LULC change decreased with increasing storm return periods, but the order of importance of different parts of the watershed, in terms of flooding, did not change significantly. Results of this study demonstrate the need for sustainable development by targeting areas that can have the least impacts on downstream flooding. The methodology presented in this paper can help decision makers propose land use alternatives to minimize adverse environmental impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali M, Khan SJ, Aslam I, Khan Z (2011) Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc Urban Plan 102(4):271–279. doi:10.1016/j.landurbplan.2011.05.006

    Article  Google Scholar 

  • Amini A, Ali TM, Ghazali AHB, Aziz AA, Akib ShM (2011) Impacts of land use change on streamflow generation in Damansara watershed, Malaysia. AJSE 36:713–720. doi:10.1007/s13369-011-0075-3

    Google Scholar 

  • Anderson J, Hardy E, Roach J, Witmer R (1976) A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey professional paper, vol. 964. 28 pp

  • Baltas EA, Dervos NA, Mimikou MA (2007) Technical note: determination of the SCS initial abstraction ratio in an experimental watershed in Greece. Hydrol Earth Syst Sci 11:1825–1829. doi:10.5194/hess-11-1825-2007

    Article  Google Scholar 

  • Birkinshaw SJ, Bathurst JC, Iroume A, Palacios H (2011) The effect of forest cover on peak flow and sediment discharge-an integrated field and modeling study in central-southern Chile. Hydrol Process 25:1284–1297. doi:10.1002/hyp.7900

    Article  Google Scholar 

  • Boggs JL, Sun G (2011) Urbanization alters watershed hydrology in the Piedmont of North Carolina. Ecohydrology 4(2):256–264. doi:10.1002/eco.198

    Article  Google Scholar 

  • Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13(11):2396–2410. doi:10.1111/j.1365-2486.2007.01446.x

    Article  Google Scholar 

  • Chen Y, Xu Y, Yin Y (2009) Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quat Int 208(1–2):121–128. doi:10.1016/j.quaint.2008.12.014

    Article  Google Scholar 

  • Definiens (2009) eCognition developer 8.0 user guide. Definiens AG, Munich

    Google Scholar 

  • Dixon B, Earls J (2012) Effects of urbanization on streamflow using SWAT with real and simulated meteorological data. Appl Geogr 35(1–2):174–190. doi:10.1016/j.apgeog.2012.06.010

    Article  Google Scholar 

  • Du J, Qian L, Rui H, Zuo T, Zheng D, Xu Y, Xu Ch-Y (2012) Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J Hydrol 464–465:127–139. doi:10.1016/j.jhydrol.2012.06.057

    Article  Google Scholar 

  • Environmental Systems Research Institute (ESRI) (2010) ArcGIS 10.0 tutorial. Copyright 1999–2010

  • Eshleman KN (2004) Hydrological consequences of land use changes: a review of the state-science. American Geophysical Union, Washington. doi:10.1029/153GM03

    Google Scholar 

  • Flanders D, Hall-Beyer M, Pereverzoff J (2003) Preliminary evaluation of eCognition object based software for cut block delineation and feature extraction. Can J Remote Sens 29(4):441–452. doi:10.5589/m03-006

    Article  Google Scholar 

  • Fu S, Zhang G, Wang N, Luo L (2011) Initial abstraction ratio in the SCS-CN method in the Loess Plateau of China. Trans ASABE 54(1):163–169. doi:10.13031/2013.36271

    Article  Google Scholar 

  • Gao GY, Fu BJ, Lu YH, Liu Y, Wang S, Zhou J (2012) Coupling the modified SCS-CN and RUSLE models to simulate hydrological effects of restoring vegetation in the Loess Plateau of China. Hydrol Earth Syst Sc 16:2347–2364. doi:10.5194/hess-16-2347-2012

    Article  Google Scholar 

  • Hawkins RH, Ward TJ, Woodward DE, Van Mullen JA (2009) Curve number hydrology- state of practice. The ASCE/EWRI Curve Number Hydrology Task Committee, Reston. doi:10.1061/9780784410042.bm

    Google Scholar 

  • Jiang R (2001) Investigation of runoff curve number initial abstraction ratio. MS thesis, Watershed Management, University of Arizona, 120 pp

  • Kalin L, Hantush MM (2009) An auxiliary method to reduce potential adverse impacts of Projected land developments: subwatershed prioritization. Environ Manag 43(2):311–325. doi:10.1007/s00267-008-9202-7

    Article  Google Scholar 

  • Lin Y-P, Verburg PH, Chang Ch-R, Chen H-Y, Chen M-H (2009) Developing and comparing optimal and empirical land-use models for the development of an urbanized watershed forest in Taiwan. Landsc Urban Plan 92:242–254. doi:10.1016/j.landurbplan.2009.05.003

    Article  Google Scholar 

  • McBride M, Booth DB (2005) Urban impacts on physical stream condition: effects of spatial scale, connectivity, and longitudinal trends. JAWRA 41(3):565–580. doi:10.1111/j.1752-1688.2005.tb03755.x

    Google Scholar 

  • Mejia A, Moglen G (2009) Spatial patterns of urban development from optimization of flood peaks and imperviousness-based measures. J Hydrol Eng 14(9):416–424. doi:10.1061/(ASCE)1084-0699(2009)14:4(416)

    Article  Google Scholar 

  • Mishra AK, Singh VP (2004) Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates. Hydrol Process 18:3323–3345. doi:10.1002/hyp.1223

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. doi:10.13031/2013.23153

    Article  Google Scholar 

  • Olang LO, Furst J (2011) Effects of land cover change on flood peak discharges and runoff volumes: model estimates for the Nyando River Basin, Kenya. Hydrol Process 25:80–89. doi:10.1002/hyp.7821

    Article  Google Scholar 

  • Qaiser K, Yuan Y, Lopez RD (2012) Urbanization impacts on flooding in the Kansas River Basin and evaluation of wetlands as a mitigation measure. Trans ASABE 55(3):849–859. doi:10.13031/2013.41519

    Article  Google Scholar 

  • Saghafian B, Farazjoo H, Bozorgy B, Yazdandoost F (2008) Flood intensification due to changes in land use. Water Resour Manag 22:1051–1067. doi:10.1007/s11269-007-9210-z

    Article  Google Scholar 

  • Shi ZhH, Chen LD, Fang NF, Qin DF, Cai ChF (2009) Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena 77(1):1–7. doi:10.1016/j.catena.2008.11.006

    Article  Google Scholar 

  • Smith JA, Baeck ML, Morrison JE, Sturdevant-Rees P, Turner-Gillespie DF, Bates PD (2002) The regional hydrology of extreme floods in an urbanizing drainage basin. J Hydrometeor 3:267–282. doi:10.1175/1525-7541(2002)003<0267:TRHOEF>2.0.CO;2

    Article  Google Scholar 

  • Taubenbock H, Wurm M, Netzband M, Zwenzner H, Roth A, Rahman A, Dech S (2011) Flood risks in urbanized areas—multi-sensoral approaches using remotely sensed data for risk assessment. Nat Hazards Earth Syst Sci 11:431–444. doi:10.5194/nhess-11-431-2011

    Article  Google Scholar 

  • Ty TV, Sunada K, Ichikawa Y, Qishi S (2012) Scenario-based impact assessment of land use/cover and climate change on water resources and demand: a case study in the Srepok River basin, Vietnam—Cambodia. Water Resour Manag 26:1387–1407. doi:10.1007/s11269-011-9964-1

    Article  Google Scholar 

  • U.S. Census Bureau (2011) Census 2010. http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml

  • Verbeiren B, Van De Voorde T, Canters F, Binard M, Cornet Y, Batelaan O (2013) Assessing urbanization effects on rainfall-runoff using a remote sensing supported modeling strategy. Int J Appl Earth Obs Geoinf 21:92–102. doi:10.1016/j.jag.2012.08.011

    Article  Google Scholar 

  • Verma AK, Jha MK, Mahana RK (2010) Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water Environ 8:131–144. doi:10.1007/s10333-009-0192-8

    Article  Google Scholar 

  • Wan R, Yang G (2007) Influence of land use/cover change on storm runoff—a case study of Xitiaoxi River basin in upstream of Taihu Lake Watershed. Chin Geogr Sci 17(4):349–356. doi:10.1007/s11769-007-0349-6

    Article  Google Scholar 

  • Woods and Poole Economics, Inc. (2011) Complete economic and demographic dataset. http://www.woodsandpoole.com/main.php?cat=country. Data processed by NOAA to determine coastal county summary totals and absolute and percent change

  • Woodward DE, Hawkins RH, Jiang R, Hjelmfelt Jr AT, Van Mullem JA, Quan QD (2003) Runoff curve number method: examination of the initial abstraction ratio. In: World water and environment resources congress 2003 and related symposia, pp 1–10. doi:10.1061/40685(2003)308

  • Zhang Y, Shuster W (2014) Impacts of spatial distribution of impervious areas on runoff response of hillslope catchments: simulation study. J Hydrol Eng 19(6):1089–1100. doi:10.1061/(ASCE)HE.1943-5584.0000905

    Article  Google Scholar 

  • Zhou F, Xu Y, Chen Y, Xu C-Y, Gao Y, Du J (2013) Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J Hydrol 485:113–125. doi:10.1016/j.jhydrol.2012.12.040

    Article  Google Scholar 

Download references

Acknowledgments

This work is a result of research sponsored by the National Oceanic and Atmospheric Administration, Department of Commerce, the Mississippi-Alabama Sea Grant Consortium (Grant Number NA10OAR4170078) and the Center for Environmental Studies at the Urban–Rural Interface, Auburn University. The help of Rajesh Sawant who developed the LULC maps from aerial photographs is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latif Kalin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Xiangzheng Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, N., Kalin, L., Sen, S. et al. Identifying areas sensitive to land use/land cover change for downstream flooding in a coastal Alabama watershed. Reg Environ Change 16, 1833–1845 (2016). https://doi.org/10.1007/s10113-016-0931-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-016-0931-5

Keywords

Navigation