Skip to main content

Advertisement

Log in

Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Coffee is an important commodity crop in Zimbabwe and many other African countries in terms of its contribution to local and national economies. Coffee production in terms of productivity and quality face severe constraints due to climate change. A study was therefore carried out to understand and quantify the potential impact of climate change on the coffee sector in Zimbabwe using a bioclimatic modelling approach. Current climatically suitable areas were identified and compared with those areas identified to be climatically suitable under projected 2050 climatic conditions. The projected climatic conditions were obtained from climate predictions of two models: CCSM4 model and HadGEM2 model. Coffee production was found to be mostly sensitive to precipitation factors as these were the most important in determining climatic suitability of coffee production in Zimbabwe. The modelling showed that current coffee suitability varies spatially between the four coffee producing districts in Zimbabwe. Chipinge district has the largest area climatically suitable for coffee production followed by Chimanimani district with Mutare district having the smallest. The modelling predicted that there will be a spatial and quantitative change in climatic suitability for coffee production in Zimbabwe by 2050. The greatest changes are projected for Mutare district where over three quarters according to the CCSM4 model and the entire district according to the HadGEM2 model will turn marginal for coffee production. A westward shift in climatic suitability of coffee was observed for Chipinge and Chimanimani district. The models predicted a loss of between 30,000 ha (CCSM4) and 50,000 ha (HadGEM2) in areas climatically suitable for coffee production by 2050 in Zimbabwe. These changes are likely to be driven by changes in the distribution of precipitation received in the coffee areas. The study presents possible adaptation measures that can be adopted by the coffee sector in Zimbabwe and the region to maintain coffee productivity under a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30

    Article  Google Scholar 

  • AFDB (2010) Coffee production in Africa and the global market situation. African Development Bank, Tunis

    Google Scholar 

  • Alves MC, Carvalho LG, Pozza EA, Sanches L, Maia J (2011) Ecological zoning of soybean rust, coffee rust and banana sigatoka based on Brazilian climate changes. Earth Syst Sci Glob Change Clim People 6:35–46. doi:10.1016/j.proenv.2011.05.005

    Google Scholar 

  • Baker P, Bentley J, Charveriat C, Dugne H, Leftoy T, Munyua H (2001) The coffee smallholder. In: Baker P (ed) Coffee futures: a source book of some critical issues confronting the coffee industries. CABI-FEDERACAFE-USDA-ICO, Chinchina, p 111

    Google Scholar 

  • Beck J (2013) Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses? Clim Change 116(2):117–189. doi:10.1007/s10584-012-0481-x

    Article  Google Scholar 

  • Bedia J, Herrera S, Gutiérrez JM (2013) Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. Glob Planet Change 107:1–12. doi:10.1016/j.gloplacha.2013.04.005

    Article  Google Scholar 

  • Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–98. doi:10.1146/annurev.energy.32.031306.102758

    Article  Google Scholar 

  • Brown HB (2008) Smallholder coffee production in Zimbabwe. CRS Press, Harare

    Google Scholar 

  • Bukvic A (2013) Identifying gaps and inconsistencies in the use of relocation rhetoric: a prerequisite for sound relocation policy and planning. Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-013-9532-5

    Google Scholar 

  • Cassidy DSM, Kumar D (1984) Root distribution of coffee arabica L. in Zimbabwe: effect of plant density, mulch, cova spacing and shade in Chipinge. Zimb J Agric Res 22:119–132

    Google Scholar 

  • Chemura A (2014) The growth response of coffee (Coffea arabica L) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. Int J Recycl Org Waste Agric 3(2):1–9. doi:10.1007/s40093-014-0059-x

    Article  Google Scholar 

  • Chemura A, Mahoya C, Kutywayo D (2010) Effect of organic nursery media on germination and initial growth of coffee seedlings. Paper presented at the 23rd Colloquium of the Association for Science and Information on Coffee (ASIC)

  • Chemura A, Mahoya C, Chidoko P, Kutywayo D (2014) Effect of soil moisture deficit stress on biomass accumulation of four coffee (Coffea arabica) varieties in Zimbabwe. ISRN Agron 2014:1–10. doi:10.1155/2014/767312

    Article  Google Scholar 

  • CIAT (2012) Future climate scenarios for Tanzania’s arabica coffee growing areas. International Center for Tropical Agriculture, Cali

    Google Scholar 

  • Clowes JM, Wilson JH (1979) Physiological factors influencing irrigation management of coffee in Rhodesia. Rhod J Agric Res 71(2):53–55

    Google Scholar 

  • Coste J (1992) Coffee: the plant and the product. Longman, New York

    Google Scholar 

  • Davis AP, Gole TW, Baena S, Moat J (2012) the impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One 7(11):e47981. doi:10.1371/journal.pone.0047981

    Article  CAS  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudı´k M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudık M, En Chee Y, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. doi:10.1111/j.1472-4642.2010.00725.x

    Article  Google Scholar 

  • ESRI (2012) ArcGIS desktop release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Evans JM, Fletcher RJ, Alavalapati J (2010) Using species distribution models to identify suitable areas for biofuel feedstock production. GCB Bioenergy 2(2):63–78. doi:10.1111/j.1757-1707.2010.01040.x

    Article  Google Scholar 

  • FAO (2003a) Issues in the global tobacco economy: selected case studies, vol 1. Food and Agricultural Organisation of the United Nations, Rome

    Google Scholar 

  • FAO (2003b) Medium term prospects in agricultural commodities: projections to the year 2010. Retrieved 30 Nov 2011, from http://www.fao.org/docrep/006/y5143e/y5143e0v.htm

  • Fithian W, Elith J, Hastie T, Keith DA (2014) Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol. doi:10.1111/2041-210X.12242

    Google Scholar 

  • Gay C, Estrada F, Conde C, Eakin H, Villers L (2006) Potential impacts of climate change on agriculture: a case study of coffee production in Veracruz, Mexico. Clim Change 79:259–288. doi:10.1007/s10584-006-9066-x

    Article  Google Scholar 

  • Gent P, Danabasoglu G, Donner L, Holland M, Hunke EC, Jayne S et al (2011) The community climate system model version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Ghini R, Bettiol W, Hamada E (2011) Diseases in tropical and plantation crops as affected by climate change: current knowledge and perspectives. Plant Pathol 60:122–132. doi:10.1111/j.1365-3059.2010.02403.x

    Article  Google Scholar 

  • Gillison AN, Liswanti N, Budidarso S, van Noordwijk M, Tomich TP (2004) Impact of cropping methods on biodiversity in coffee agroecosystems in Sumatra, Indonesia. Ecol Soc 9(2):1–31

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84(11):2809–2815. doi:10.1890/02-3114

    Article  Google Scholar 

  • Haggar J, Barrios M, Bolanos M, Merlo M, Moraga P, Munguia R et al (2011) Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82(3):285–301. doi:10.1007/s10457-011-9392-5

    Article  Google Scholar 

  • Hannah L, Ikegami M, Hole DG, Seo C, Butchart SHM, Peterson AT et al (2013) Global climate change adaptation priorities for biodiversity and food security. PLoS One 8(8):e72590. doi:10.1371/journal.pone.0072590

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • ICO (2009) Climate change and coffee. Paper presented at the International Coffee Council

  • Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemesister C (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS One 6(9):e24528. doi:10.1371/journal.pone.0024528

    Article  CAS  Google Scholar 

  • Jayathilaka PMS, Soni P, Perret S, Jayasuriya HPW, Salokhe V (2012) Spatial assessment of climate change effects on crop suitability for major plantation crops in Sri Lanka. Reg Environ Change 12(1):55–68. doi:10.1007/s10113-011-0235-8

    Article  Google Scholar 

  • Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jing-Song S, Guang-Sheng Z, Xing-Hua S (2012) Climatic suitability of the distribution of the winter wheat cultivation zone in China. Eur J Agron 43:77–86. doi:10.1016/j.eja.2012.05.009

    Article  Google Scholar 

  • Jones A, Haywood J, Boucher O, Kravitz B, Robock A (2010) Geoengineering by stratospheric SO2 injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE. Atmos Chem Phys 10:5999–6006. doi:10.5194/acp-10-5999-2010

    Article  CAS  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi:10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Kutywayo D, Chingwara V, Mahoya C, Chemura A, Masaka J (2010) The effect of different levels of irrigation water and nitrogen fertilizer on vegetative growth components and yield of coffee in Zimbabwe. MSU J Sci Technol 2(2):45–54

    Google Scholar 

  • Kutywayo D, Chemura A, Kusena W, Chidoko P, Mahoya C (2013) The impact of climate change on the potential distribution of agricultural pests: the case of the coffee white stem borer (Monochamus leuconotus P.) in Zimbabwe. PLoS One 8(8):e73432. doi:10.1371/journal.pone.0073432

    Article  CAS  Google Scholar 

  • Laderach P, Jarvis A, Ramirez J (2006) The impact of climate change in coffee-growing regions: the case of 10 municipalities in Nicaragua: CafeDirect/GTZ

  • Lane A, Jarvis A (2007) Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. SAT eJ 4(4):1–12

    Google Scholar 

  • Lasco RD, Delfino RJP, Catacutan DC, Simelton ES, Wilson DM (2014) Climate risk adaptation by smallholder farmers: the roles of trees and agroforestry. Curr Opin Environ Sustain 6:83–88. doi:10.1016/j.cosust.2013.11.013

    Article  Google Scholar 

  • Lin B (2008) Microclimate effects on flowering success in coffee agroforestry systems. Am-Eurasian J Agric Environ Sci 3(2):145–152

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Logan WJC, Biscoe J (1987) Coffee handbook. Zimbabwe Coffee Growers Association, Harare

    Google Scholar 

  • Makadho JM (1996) Potential effects of climate change on corn production in Zimbabwe. Clim Res 6:147–151

    Article  Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H et al (2009) Mixing plant species in cropping systems: concepts, tools and models: a review. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Amsterdam, pp 329–353

    Chapter  Google Scholar 

  • Maravanyika E (1998) Do financially viable alternatives to tobacco growing exist in Zimbabwe? In: Abedian I, van der Merwe R, Wilins N, Jha P (eds) The economics of tobacco control: towards an optimal policy mix. Applied Fiscal Research Centre, University of Cape Town, Cape Town, pp 192–201

    Google Scholar 

  • Masarirambi MT, Chingwara V, Shongwe VD (2009) The effect of irrigation on synchronization of coffee (Coffea arabica L.) flowering and berry ripening at Chipinge, Zimbabwe. Phys Chem Earth 34(13–16):786–789. doi:10.1016/j.pce.2009.06.013

    Article  Google Scholar 

  • Mayer B (2011) Migration as a sustainable adaptation strategy. Paper presented at the 2nd Conference of the Initiative on Climate Adaptation Research and Understanding through the Social Sciences: Climate Vulnerability and Adaptation: Marginal Peoples and Environments, 5–8 May. Ann Arbor, MI

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. doi:10.1016/j.cosust.2013.09.002

    Article  Google Scholar 

  • Montagnini F, Nair P (2004) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61(1–3):281–295. doi:10.1023/B:AGFO.0000029005.92691.79

    Google Scholar 

  • Morin X, Thuiller W (2009) Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90(5):1301–1313. doi:10.2307/25592622

    Article  Google Scholar 

  • Murphy TS, Phiri NA, Sreedharan K, Kutywayo D, Chanika C (2008) Integrated stem borer management in smallholder coffee farms in India, Malawi and Zimbabwe. Final Technical Report

  • Mutasa C (2008) Evidence of climate change in Zimbabwe. Paper presented at the Climate Change Awareness and Dialogue Workshop for Mashonaland Central and Mashonaland West Provinces

  • Nabout JC, Caetano JM, Ferreira RB, Teixeira IR, de Freitas Alves SM (2012) Using correlative, mechanistic and hybrid niche models to predict the productivity and impact of global climate change on maize crop in Brazil. Nat Conserv 10(2):177–183

    Article  Google Scholar 

  • Nair KPP (2010) The agronomy and economy of important tree crops of the developing World. Elservier, Amsterdam

    Google Scholar 

  • Nenzéna HK, Araújo MB (2011) Choice of threshold alters projections of species range shifts under climate change. Ecol Model 222:3346–3354. doi:10.1016/j.ecolmodel.2011.07.011

    Article  Google Scholar 

  • O’Brien R (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–690. doi:10.1007/s11135-006-9018-6

    Article  Google Scholar 

  • Pearson RG (2007) Species distribution modeling for conservation educators and practitioners. American Museum of Natural History. http://academic.uprm.edu/~jchinea/UIP-MAPR/refs/modelos/pearson2008.pdf

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. doi:10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Phillips SJ, Dudık M, Elith J, Graham CH, Lehmann A, Leathwick J et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo absence data. Ecol Appl 19:181–197. doi:10.1890/07-2153.1

    Article  Google Scholar 

  • Philpott SM, Bichier P, Rice R, Greenberg R (2007) Field-testing ecological and economic benefits of coffee certification programs. Conserv Biol 21(4):975–985. doi:10.1111/j.1523-1739.2007.00728.x

    Article  Google Scholar 

  • Priess JA, Mimler M, Klein AM, Schwarze S, Tscharntke T, Steffan-Dewenter I (2007) Linking deforestation scenarios to pollination services and economic returns in coffee agroforestry systems. Ecol Appl 17(2):407–417. doi:10.1890/05-1795

    Article  CAS  Google Scholar 

  • Rahn E, Läderach P, Baca M, Cressy C, Schroth G, Malin D et al (2013) Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies? Mitig Adapt Strateg Glob Change. doi:10.1007/s11027-013-9467-x

    Google Scholar 

  • Rao K, Verchot LV, Laarman J (2007) Adaptation to climate change through sustainable management and development of agroforestry systems. SAT eJ 4(1):1–30

    Google Scholar 

  • Schroth G, Laderach P, Dempewolf J, Philpott S, Haggar J, Eakin H et al (2009) Towards a climate change adaptation strategy for coffee communities and ecosystems in Sierra Madre de Chiappas, Mexico. Mitig Adapt Glob Change 14:605–625. doi:10.1007/s11027-009-9186-5

    Article  Google Scholar 

  • Siles P, Harmand J-M, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78(3):269–286. doi:10.1007/s10457-009-9241-y

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51

    Article  Google Scholar 

  • Svenning J, Normand S, Kageyama M (2008) Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol 96:1117–1127. doi:10.1111/j.1365-2745.2008.01422.x

    Article  Google Scholar 

  • Tucker CM, Eakin H, Castellanos EJ (2010) Perceptions of risk and adaptation: coffee producers, market shocks and extreme weather in Central America and Mexico. Glob Environ Change 20:23–32. doi:10.1016/j.gloenvcha.2009.07.006

    Article  Google Scholar 

  • Vaast P, van Kanten R, Siles P, Dzib B, Franck N, Harmand J et al (2005) Shade: a key factor for coffee sustainability and quality. Paper presented at the 20th Colloquium of the Association for Science and Information on Coffee (ASIC). Bangalore, India

  • Vaast P, Bertrand B, Perriot J-J, Guyot B, Genard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agric 86:197–204. doi:10.1002/jsfa.2338

    Article  CAS  Google Scholar 

  • van Oijen M, Dauzat J, Harmand J-M, Lawson G, Vaast P (2010) Coffee agroforestry systems in Central America: II. Development of a simple process-based model and preliminary results. Agrofor Syst 80:361–378. doi:10.1007/s10457-010-9291-1

    Article  Google Scholar 

  • Villordon A, Njuguna W, Ndolo P, Kulembaka H, Jeremiah SC, LaBonte D et al (2006) Using GIS-Based tools and distribution modelling to determine sweet potato germplasm exploration and documentation priorities in sub-Saharan Africa. HortScience 41(6):1377–1381

    Google Scholar 

  • Washington-Ottombre C, Pijanowski BC (2013) Rural organizations and adaptation to climate change and variability in rural Kenya. Reg Environ Change 13:537–550. doi:10.1007/s10113-012-0343-0

    Article  Google Scholar 

  • Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R et al (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186. doi:10.1126/science.1168475

    Article  CAS  Google Scholar 

  • Wrigley G (1988) Coffee. Longman Scientific and Technical, London

    Google Scholar 

  • Young N, Carter L, Evangelista P (2011) A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). Natural Resource Ecology Laboratory, Colorado State University and the National Institute of Invasive Species Science

  • Ziervogel G, Zermoglio F (2009) Climate change scenarios and the development of adaptation strategies in Africa: challenges and opportunities. Clim Res 30:133–146. doi:10.3354/cr00804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Chemura.

Additional information

Editor: Erica Smithwick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemura, A., Kutywayo, D., Chidoko, P. et al. Bioclimatic modelling of current and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe. Reg Environ Change 16, 473–485 (2016). https://doi.org/10.1007/s10113-015-0762-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0762-9

Keywords

Navigation