Skip to main content
Log in

The use of local indicators of spatial association to improve LiDAR-derived predictions of potential amphibian breeding ponds

  • Original Paper
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

We examined whether spatially explicit information improved models that use LiDAR return signal intensity to discriminate in-pond habitat from terrestrial habitat at 24 amphibian breeding ponds. The addition of Local Indicators of Spatial Association (LISA) to LiDAR return intensity data significantly improved predictive models at all ponds, reduced residual error by as much as 74%, and appeared to improve models by reducing classification errors associated with types of in-pond vegetation. We conclude that LISA statistics can help maximize the information content that can be extracted from time resolved LiDAR return data in models that predict the occurrence of small, seasonal ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csáaki F (eds) Second international symposium on information theory. Akadéemiai Kiadi, Budapest, pp 267–281

    Google Scholar 

  • Anselin L (1995) Local indicators of spatial association: LISA. Geogr Anal 27:93–115

    Google Scholar 

  • Anselin L (2003) GeoDa 0.9 user’s guide. Spatial analysis laboratory (SAL), Department of agricultural and consumer economics, University of Illinois, Urbana-Champaign, IL, USA

  • Antonarakis AS, Richards KS, Brasington J (2008) Object-based land cover classification using airborne LiDAR. Remote Sens Environ 112:2988–2998. doi:10.1016/j.rse.2008.02.004

    Article  Google Scholar 

  • Brock JC, Wright CW, Sallenger AH, Krabill WB, Swift RN (2002) Basis and methods of NASA airborne topographic mapper lidar surveys for coastal studies. J Coast Res 18:1–13

    Google Scholar 

  • Brooks RT, Stone J, Lyons P (1998) An inventory of seasonal forest ponds on the Quabbin reservoir watershed, Massachusetts. Northeastern Nat 5:219–230. doi:10.2307/3858622

    Article  Google Scholar 

  • Burnham KP, Anderson DR (eds) (2002) Model selection and multimodal inference, 2nd edn. Springer, New York

  • Calhoun AJK, Walls TE, Stockwell SS, McCollough M (2003) Evaluating vernal pools as a basis for conservation strategies: a maine case study. Wetlands 23:70–81. doi:10.1672/0277-5212(2003)023[0070:EVPAAB]2.0.CO;2

    Article  Google Scholar 

  • Campbell JB (1987) Introduction to remote sensing. The Guilford Press, New York

    Google Scholar 

  • Chust G, Galparsoro I, Borja A, Franco J, Uriarte A (2008) Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuar Coast Shelf Sci 78:633–643. doi:10.1016/j.ecss.2008.02.003

    Article  Google Scholar 

  • Comer P, Goodin K, Tomaino A, Hammerson G, Kittel G, Menard S, Nordman C, Pyne M, Reid M, Sneddon L, Snow K (2005) Biodiversity values of geographically isolated wetlands in the United States. NatureServe, Arlington

    Google Scholar 

  • Donoghue DNM, Watt PJ, Cox NJ, Wilson J (2007) Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sens Environ 110:509–522. doi:10.1016/j.rse.2007.02.032

    Article  Google Scholar 

  • Dubayah RO, Drake JB (2000) Lidar remote sensing for forestry. J For 98:44–46

    Google Scholar 

  • Fike J (1999) Terrestrial and palustrine plant communities of Pennsylvania. Pennsylvania Natural Diversity Inventory, Pennsylvania Department of Conservation and Recreation, Bureau of Forestry, Harrisburg, PA, USA 86pp

  • Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landsc Ecol 13:263–268. doi:10.1023/A:1008056424692

    Article  Google Scholar 

  • Grant EHC (2005) Correlates of vernal pool occurrence in the Massachusetts, USA landscape. Wetlands 25:480–487. doi:10.1672/22

    Article  Google Scholar 

  • Grossman DH, Faber-Langendoen D, Weakley AS, Anderson M, Bourgeron P, Crawford R, Goodin K, Landaal S, Metzler K, Patterson KD, Pyne M, Reid M, Sneddon L (1998) International classification of ecological communities: terrestrial vegetation of the United States, vol I. The National vegetation classification system: development, status, and applications. The Nature Conservancy, Arlington, VA, USA

  • Kutner MH, Nachtsheim CJ, Neter J (eds) (2004) Applied linear regression models, 4th edn. McGraw-Hill Irwin, Boston

  • Palik BJ, Buech R, Egeland L (2003) Using an ecological land hierarchy to predict seasonal-wetland abundance in upland forests. Ecol Appl 13:1153–1163. doi:10.1890/1051-0761(2003)13[1153:UAELHT]2.0.CO;2

    Article  Google Scholar 

  • Phinn SR, Stow DA, Franklin J, Mertes LA, Michaelsen J (2003) Remotely sensed data for ecosystem analysis: combining hierarchy theory and scene models. Environ Manage 31:429–441. doi:10.1007/s00267-002-2837-x

    Article  Google Scholar 

  • Ping JL, Green CJ, Zartman RE, Bronson KF (2004) Exploring spatial dependence of cotton yield using global and local autocorrelation statistics. Field Crops Res 89:219–236. doi:10.1016/j.fcr.2004.02.009

    Article  Google Scholar 

  • Portnoy JW (1987) Vernal ponds of the Cape Cod National Seashore: location, water chemistry, and Ambystoma breeding biology. Unpublished report. US National Park Service, Cape Cod National Seashore, Wellfleet, MA, USA

  • Roth AH, Jackson JF (1987) The effect of pool size on recruitment of predatory insects and on mortality in larval anuran. Herpetologica 43:24–232

    Google Scholar 

  • Schneider DW, Frost TM (1996) Habitat duration and community structure in temporary ponds. J N Am Benthol Soc 15:64–86. doi:10.2307/1467433

    Article  Google Scholar 

  • Semlitsch RD (2000) Principles for management of aquatic-breeding amphibians. J Wildl Manage 64:615–631. doi:10.2307/3802732

    Article  Google Scholar 

  • Semlitsch RD, Bodie JR (1998) Are small, isolated wetlands expendable? Conserv Biol 12:1129–1133. doi:10.1046/j.1523-1739.1998.98166.x

    Article  Google Scholar 

  • Shi H, Zhang L (2003) Local analysis of tree competition and growth. For Sci 49:938–955

    Google Scholar 

  • Skelly DK (1996) Pond drying, predators, and the distribution of Pseudacris tadpoles. Copeia 1996:599–605. doi:10.2307/1447523

    Article  Google Scholar 

  • Snyder CD, Julian JT, Young AJ, King TL (2005) Assessment of Ambystomatid salamander populations and their breeding habitats in Delaware Water Gap National Recreation Area. Report submitted to National Park Service, Delaware Water Gap National Recreation Area, 51 p

  • Song JH, Han SH, Yu K, Kim YI (2002) Assessing the possibility of land-cover classification using LiDAR intensity data. In: ISPRS Commission III, Symposium 2002, 9–13 September 2002, Graz, Austria

  • Southworth J, Monroe D, Nagendra H (2004) Land cover change and landscape fragmentation—comparing the utility of continuous and discrete analyses for a western Honduras region. Agric Ecosyst Environ 101:185–205. doi:10.1016/j.agee.2003.09.011

    Article  Google Scholar 

  • Strahler AH, Woodcock CE, Smith JA (1986) On the nature of models in remote sensing. Remote Sens Environ 20:121–139. doi:10.1016/0034-4257(86)90018-0

    Article  Google Scholar 

  • Stone JS (1992) Vernal pools in Massachusetts: aerial photographic identification, biological and physiographic characteristics, and state certification criteria. Master’s Thesis. University of Massachusetts, Amherst, MA, USA

  • Tiner RW (2003) Estimating the extent of geographically isolated wetlands in selected area of the United States. Wetlands 23:636–652. doi:10.1672/0277-5212(2003)023[0636:EEOGIW]2.0.CO;2

    Article  Google Scholar 

  • Townsend PA (2001) Mapping seasonal flooding in forested wetlands using multi-temporal radarsat SAR. Photogram Eng Remote Sensing 67:857–864

    Google Scholar 

  • Wehr A, Lohr U (1999) Airborne laser scanning—an introduction and overview. J Photogrammetry Remote Sens 54:68–82. doi:10.1016/S0924-2716(99)00011-8

    Article  Google Scholar 

  • Woodward BD (1983) Predator prey interactions and breeding pond use of temporary pond species in a desert anuran community. Ecology 64:1549–1555. doi:10.2307/1937509

    Article  Google Scholar 

  • Wright CW, Brock JC (2002) EAARL: a LiDAR for mapping shallow coral reefs and other coastal environments. In: Proceedings of seventh international conference on remote sensing for marine and coastal environments, Miami, FL, USA, 20–22 May 2002

  • Wright C, Gallant A (2007) Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens Environ 107:582–605. doi:10.1016/j.rse.2006.10.019

    Article  Google Scholar 

  • Wright CW, Riordan K, Noronha C (2003) Advancement in LiDAR data collection: NASA’s experimental advanced airborne research LiDAR. In: Proceedings of the 3rd biennial costal GeoTools conference, Charleston, SC, USA, 6–9 January 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Julian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julian, J.T., Young, J.A., Jones, J.W. et al. The use of local indicators of spatial association to improve LiDAR-derived predictions of potential amphibian breeding ponds. J Geogr Syst 11, 89–106 (2009). https://doi.org/10.1007/s10109-008-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-008-0074-4

Keywords

JEL

Navigation