Skip to main content
Log in

Bulk-Robust combinatorial optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We commence an algorithmic study of Bulk-Robustness, a new model of robustness in combinatorial optimization. Unlike most existing models, Bulk-Robust combinatorial optimization features a highly nonuniform failure model. Instead of an interdiction budget, Bulk-Robust counterparts provide an explicit list of interdiction sets, comprising the admissible set of scenarios, thus allowing to model correlations between failures of different components in the system, interdiction sets of variable cardinality and more. The resulting model is suitable for capturing failures of complex structures in the system. We provide complexity results and approximation algorithms for Bulk-Robust counterparts of the Minimum Matroid Basis problems and the Shortest Path problem. Our results rely on various techniques, and outline the rich and heterogeneous combinatorial structure of Bulk-Robust optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Recall that \(\mathrm {DTIME}(f(n))\) is the class of all decision problems that can be solved by a deterministic Turing Machine with running time \(O(f(n))\) (see e.g. [21]). The statement \(\mathrm {NP} \subseteq \mathrm {DTIME}(n^{\log \log n})\) would imply that NP–hard problems admit algorithms with running time \(O(n^{\log \log n})\). However, it is widely believed that \(\mathrm {NP}\)-hard problems do not admit quasi-polynomial time algorithms, which are algorithms with running time \(O(2^{\log ^c n})\), where \(c\) is constant.

  2. Furthermore, if one assumes that the monotone submodular function is only accessible through a value oracle, then Nemhauser and Wolsey [30] showed that any algorithm with an approximation factor of \(1-\frac{1}{e}+\epsilon \), for any fixed \(\epsilon >0\), needs an exponential number of queries to the value oracle.

References

  1. Adjiashvili, D.: Structural Robustness in Combinatorial Optimization. Ph.D. thesis, Zürich, Switzerland (2012)

  2. Adjiashvili, D.: Fault-tolerant shortest paths-beyond the uniform failure model. arXiv:1301.6299 (2013, preprint)

  3. Adjiashvili, D., Zenklusen, R.: An s-t connection problem with adaptability. Discret. Appl. Math. 159, 695–705 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aissi, H., Bazgan, C., Vanderpooten, D.: Minmax and minmax regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res. 197(2), 427–438 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alimonti, P., Kann, V.: Hardness of approximating problems on cubic graphs. In: Bongiovanni, Giancarlo, Bovet, Daniel, Di Battista, Giuseppe (eds.) Algorithms and Complexity, Lecture Notes in Computer Science, vol. 1203, pp. 288–298. Springer, Berlin/Heidelberg (1997)

    Google Scholar 

  6. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Math. Program. Ser. A 128, 355–372 (2009)

    Article  Google Scholar 

  7. Bernstein, A.: A nearly optimal algorithm for approximating replacement paths and k shortest simple paths in general graphs. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 742–755 (2010)

  8. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53, 464–501 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. Ser. B 98, 2003 (2003)

    Article  MathSciNet  Google Scholar 

  10. Catanzaro, D., Labb, M., Salazar-Neumann, M.: Reduction approaches for robust shortest path problems. Comput. Oper. Res. 38(11), 1610–1619 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In Proceedings of the 51st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 575–584 (2010)

  12. Chekuri, C., Vondrák, J., Zenklusen. R.: Multi-budgeted matchings and matroid intersection via dependent rounding. In Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms (SODA), pp. 1080–1097 (2011)

  13. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 783–792 (2011)

  14. Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected spanning subgraphs via matching. SIAM J. Comput. 30, 292–301 (2000)

    Article  MathSciNet  Google Scholar 

  15. Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: approximation algorithms for demand-robust covering problems. In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 367–376 (2005, October)

  16. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing (STOC), pp. 750–759, New York, NY, USA (1999)

  17. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652 (July 1998)

    Google Scholar 

  18. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.: Robust combinatorial optimization with exponential scenarios. In: Fischetti, Matteo, Williamson, David (eds.) Proceedings of Integer Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science, vol. 4513, pp. 439–453. Springer, Berlin (2007)

    Chapter  Google Scholar 

  19. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Proceedings of the 52nd IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, pp. 570–579. Washington, DC, USA, (2011)

  20. Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the smallest k-edge connected spanning subgraph by LP-rounding. Networks 53(4), 345–357 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co, New York (1990)

    Google Scholar 

  22. Golovin, D., Goyal, V., Ravi, R.: Pay today for a rainy day: improved approximation algorithms for demand-robust min-cut and shortest path problems. In: Durand, Bruno, Thomas, Wolfgang (eds.) Proceedings of 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer Science, vol. 3884, pp. 206–217. Springer, Berlin (2006)

    Google Scholar 

  23. Grandoni, F., Ravi, R., Singh, M., Zenklusen, R.: New approaches to multi-objective optimization. Math. Program. Ser. A., Available online at http://link.springer.com/article/10.1007 (to appear)

  24. Grandoni, F., Vassilevska Williams, V.: Improved distance sensitivity oracles via fast single-source replacement paths. In: FOCS, pp. 748–757 (2012)

  25. Hassin, R.: Approximation schemes for the restricted shortest path problem. Math. Oper. Res. 17, 36–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40, 97–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khandekar, R., Kortsarz, G., Mirrokni, V., Salavatipour, M.: Two-stage robust network design with exponential scenarios. In: Halperin, Dan, Mehlhorn, Kurt (eds.) ESA 2008, Lecture Notes in Computer Science, vol. 5193, pp. 589–600. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  28. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer, Boston (1997)

    Book  MATH  Google Scholar 

  29. Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the Twentieth Annual ACM–SIAM Symposium on Discrete Algorithms, SODA’09, pp. 545–554, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics

  30. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  31. Olver, N.-K.: Robust network design. Ph.D. thesis. Montreal, Que., Canada (2010)

  32. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: FOCS’00: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, IEEE Computer Society, pp. 86–92, Washington, DC, USA (2000)

  33. Ravi, R., Goemans, M.X.: The constrained minimum spanning tree problem. In: Algorithm Theory—SWAT’96, volume 1097 of Lecture Notes in Computer Science, pp. 66–75. Springer, Berlin (1996)

  34. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many birds with one stone: multi-objective approximation algorithms. In: Proceedings of the twenty-fifth annual ACM Symposium on the Theory of Computing, STOC’93, pp. 438–447 (1993)

  35. Raz R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC’97, ACM, pp. 475–484 (1997)

  36. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    Google Scholar 

  37. Sorkin, G.B., Steger, A., Zenklusen, R.: A tight bound on the collection of edges in MSTs of induced subgraphs. J. Combin. Theory Ser. B 99, 428–435 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Vassilevska Williams, V.: Faster replacement paths. In: Proceedings of the 22rd Annual ACM—SIAM Symposium on Discrete Algorithms (SODA), pp. 1337–1346 (2011)

  39. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix and triangle problems. In: Proceedings of the 53rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 645–654 (2010)

  40. Warburton, A.: Approximation of pareto optima in multiple-objective, shortest-path problems. Oper. Res. 35(1), 70–79 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yu, G., Yang, J.: On the robust shortest path problem. Comput. Oper. Res. 25(6), 457–468 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zenklusen, R.: Matching interdiction. Discret. Appl. Math. 158(15), 1676–1690 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to two referees, whose comments and suggestions considerably helped to improve the presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Adjiashvili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adjiashvili, D., Stiller, S. & Zenklusen, R. Bulk-Robust combinatorial optimization. Math. Program. 149, 361–390 (2015). https://doi.org/10.1007/s10107-014-0760-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0760-6

Keywords

Mathematics Subject Classification

Navigation