Skip to main content
Log in

Moreau’s decomposition in Banach spaces

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Moreau’s decomposition is a powerful nonlinear hilbertian analysis tool that has been used in various areas of optimization and applied mathematics. In this paper, it is extended to reflexive Banach spaces and in the context of generalized proximity measures. This extension unifies and significantly improves upon existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  2. Alber, Y.I.: Decomposition theorems in Banach spaces. In: Operator Theory and Its Applications, vol. 25, pp. 77–93. Fields Institute Communications, AMS, Providence, RI (2000)

  3. Alber, Y.I.: James orthogonality and orthogonal decompositions of Banach spaces. J. Math. Anal. Appl. 312, 330–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Brézis, H.: Duality for the sum of convex functions in general Banach spaces. In: Aspects of Mathematics and Its Applications, pp. 125–133. North-Holland, Amsterdam (1986)

  5. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  8. Borwein, J.M., Vanderwerff, J.D.: Convex functions of Legendre type in general Banach spaces. J. Convex Anal. 8, 569–581 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55, 45–51 (2006)

    Article  MATH  Google Scholar 

  10. Censor, Y., Zenios, S.A.: Proximal minimization algorithm with D-functions. J. Optim. Theory Appl. 73, 451–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christensen, O.: Frames and Bases—An Introductory Course. Birkhäuser, Boston, MA (2008)

    MATH  Google Scholar 

  12. Collins, W.D.: Dual extremum principles and Hilbert space decompositions. In: Duality and Complementarity in Mechanics of Solids, pp. 351–418. Ossolineum, Wrocław (1979)

  13. Combettes, P.L., Dũng, D.: Dualization of signal recovery problems. Set-Valued Var. Anal. 18, 373–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Combettes, P.L., Pesquet, J.-C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18, 1351–1376 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, S.-P., Mangasarian, O.L.: Conjugate cone characterization of positive definite and semidefinite matrices. Linear Algebra Appl. 56, 89–103 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hiriart-Urruty, J.-B., Plazanet, Ph.: Moreau’s decomposition theorem revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 325–338 (1989)

  18. Hiriart-Urruty, J.-B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52, 593–629 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, Y.H., Song, W.: Weak sharp solutions for variational inequalities in Banach spaces. J. Math. Anal. Appl. 374, 118–132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lescarret, C.: Applications “prox” dans un espace de Banach. C. R. Acad. Sci. Paris Sér. A Math. 265, 676–678 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Lucet, Y.: What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM Rev. 52, 505–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moreau, J.-J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris Sér. A Math. 255, 238–240 (1962)

    MathSciNet  MATH  Google Scholar 

  23. Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Sér. A Math. 255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  24. Moreau, J.-J.: Sur la fonction polaire d’une fonction semi-continue supérieurement. C. R. Acad. Sci. Paris Sér. A Math. 258, 1128–1130 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Level sets and continuity of conjugate convex functions. Trans. Am. Math. Soc. 123, 46–63 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  28. Rockafellar, R.T.: Moreau’s proximal mappings and convexity in Hamilton-Jacobi theory. In: Nonsmooth Mechanics and Analysis, pp. 3–12. Springer, New York (2006)

  29. Schöpfer, F., Schuster, T., Louis, A.K.: Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods. J. Inverse Ill-Posed Probl. 16, 479–506 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Song, W., Cao, Z.: The generalized decomposition theorem in Banach spaces and its applications. J. Approx. Theory 129, 167–181 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17, 670–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wexler, D.: Prox-mappings associated with a pair of Legendre conjugate functions. Rev. Française Automat. Informat. Recherche Opérationnelle 7, 39–65 (1973)

    MathSciNet  MATH  Google Scholar 

  33. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgment

The authors thank one of the referees for making some valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Combettes.

Additional information

The work of P. L. Combettes was supported by the Agence Nationale de la Recherche under grant ANR-08-BLAN-0294-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combettes, P.L., Reyes, N.N. Moreau’s decomposition in Banach spaces. Math. Program. 139, 103–114 (2013). https://doi.org/10.1007/s10107-013-0663-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0663-y

Keywords

Mathematics Subject Classification

Navigation