Skip to main content
Log in

Combining and scaling descent and negative curvature directions

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The aim of this paper is the study of different approaches to combine and scale, in an efficient manner, descent information for the solution of unconstrained optimization problems. We consider the situation in which different directions are available in a given iteration, and we wish to analyze how to combine these directions in order to provide a method more efficient and robust than the standard Newton approach. In particular, we will focus on the scaling process that should be carried out before combining the directions. We derive some theoretical results regarding the conditions necessary to ensure the convergence of combination procedures following schemes similar to our proposals. Finally, we conduct some computational experiments to compare these proposals with a modified Newton’s method and other procedures in the literature for the combination of information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bunch J.R., Parlett B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8, 639–655 (1971)

    Article  MathSciNet  Google Scholar 

  2. Byrd R.H., Schnabel R.B., Shultz G.A.: Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math. Program. 40, 247–263 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dolan E., Moré J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fiacco A.V., McCormick G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Society for Industrial and Applied Mathematics, Philadelphia (1990)

    MATH  Google Scholar 

  5. Fletcher R.: Practical Methods of Optimization, Volume 1, Unconstrained Optimization. Wiley, New York and Toronto (1980)

    Google Scholar 

  6. Forsgren A., Murray W.: Newton methods for large-scale linear equality-constrained minimization. SIAM J. Matrix Anal. Appl. 14, 560–587 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gill P.E., Murray W.: Newton type methods for unconstrained and linearly constrained optimization. Math. Program. 7, 311–350 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gill P.E., Murray W., Wright M.H.: Practical Optimization. Academic Press, London and New York (1981)

    MATH  Google Scholar 

  9. Goldfarb D.: Curvilinear path steplength algorithms for minimization which use directions of negative curvature. Math. Program. 18, 31–40 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gould N.I.M., Lucidi S., Roma M., Toint Ph.L.: Exploiting negative curvature directions in linesearch methods for unconstrained optimization. Optim. Methods Softw. 14, 75–98 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gould N.I.M., Orban D., Toint Ph.L.: CUTEr (and SifDec), a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hager W.W., Zhang H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moguerza J.M., Prieto F.J.: An augmented Lagrangian interior-point method using directions of negative curvature. Math. Program. 95, 573–616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Moguerza J.M., Prieto F.J.: Combining search directions using gradient flows. Math. Program. 96, 529–559 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moré J.J., Sorensen D.C.: On the use of directions of negative curvature in a modified Newton method. Math. Program. 16, 1–20 (1979)

    Article  MATH  Google Scholar 

  16. Mukai H., Polak E.: A second-order method for the general nonlinear programming problem. J. Optim. Theory Appl. 26, 515–532 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Olivares, A., Moguerza, J.M., Prieto, F.J.: Nonconvex optimization using an adapted linesearch, Eur. J. Oper. Res. pages to be assigned, (2007)

  18. Sanmatías S., Vercher E.: A generalized conjugate gradient algorithm. J. Optim. Theory Appl. 98, 489–502 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sanmatías S., Roma M.: Un método de búsqueda Lineal con Direcciones Combinadas Para La Optimización Irrestringida. Actas del XXVI Congreso Nacional de Estadística e Investigación Operativa, Úbeda, Spain (2001)

    Google Scholar 

  20. Sun J., Yang X., Chen X.: Quadratic cost flow and the conjugate gradient method. Eur. J. Oper. Res. 164, 104–114 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina P. Avelino.

Additional information

Catarina P. Avelino was partially supported by Portuguese FCT postdoctoral grant SFRH/BPD/20453/2004 and by the Research Unit CM-UTAD of University of Trás-os-Montes e Alto Douro. Javier M. Moguerza and Alberto Olivares were partially supported by Spanish grant MEC MTM2006-14961-C05-05.

Francisco J. Prieto was partially supported by grant MTM2007-63140 of the Spanish Ministry of Education.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avelino, C.P., Moguerza, J.M., Olivares, A. et al. Combining and scaling descent and negative curvature directions. Math. Program. 128, 285–319 (2011). https://doi.org/10.1007/s10107-009-0305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0305-6

Keywords

AMS Subject Classification

Navigation