Skip to main content
Log in

A partition-based relaxation for Steiner trees

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The Steiner tree problem is a classical NP-hard optimization problem with a wide range of practical applications. In an instance of this problem, we are given an undirected graph G = (V, E), a set of terminals \({R\subseteq V}\) , and non-negative costs c e for all edges \({e \in E}\) . Any tree that contains all terminals is called a Steiner tree; the goal is to find a minimum-cost Steiner tree. The vertices \({V \backslash R}\) are called Steiner vertices. The best approximation algorithm known for the Steiner tree problem is a greedy algorithm due to Robins and Zelikovsky (SIAM J Discrete Math 19(1):122–134, 2005); it achieves a performance guarantee of \({1+\frac{\ln 3}{2}\approx 1.55}\) . The best known linear programming (LP)-based algorithm, on the other hand, is due to Goemans and Bertsimas (Math Program 60:145–166, 1993) and achieves an approximation ratio of 2−2/|R|. In this paper we establish a link between greedy and LP-based approaches by showing that Robins and Zelikovsky’s algorithm can be viewed as an iterated primal-dual algorithm with respect to a novel LP relaxation. The LP used in the first iteration is stronger than the well-known bidirected cut relaxation. An instance is b-quasi-bipartite if each connected component of \({G \backslash R}\) has at most b vertices. We show that Robins’ and Zelikovsky’s algorithm has an approximation ratio better than \({1+\frac{\ln 3}{2}}\) for such instances, and we prove that the integrality gap of our LP is between \({\frac{8}{7}}\) and \({\frac{2b+1}{b+1}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, A., Charikar, M.: On the advantage of network coding for improving network throughput. In: Proc. IEEE Information Theory Workshop, pp. 105–109 (2004)

  2. Agrawal A., Klein P., Ravi R.: When trees collide: an approximation algorithm for the generalized Steiner problem in networks. SIAM J. Comput. 24, 440–456 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aneja Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10, 167–178 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman P., Ramaiyer V.: Improved approximations for the Steiner tree problem. J. Algorithms 17(3), 381–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borchers A., Du D.: The k-Steiner ratio in graphs. SIAM J. Comput. 26(3), 857–869 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chakrabarty, D., Devanur, N.R., Vazirani, V.V.: New geometry-inspired relaxations and algorithms for the metric Steiner tree problem. In: Proc. 13th IPCO, pp. 344–358 (2008)

  7. Chlebík M., Chlebíková J.: The Steiner tree problem on graphs: inapproximability results. Theor. Comput. Sci. 406(3), 207–214 (2008) [Preliminary version appeared in Proc. 8th SWAT. 170–179 (2002)]

    Article  MATH  Google Scholar 

  8. Chopra S.: On the spanning tree polyhedron. Oper. Res. Lett. 8, 25–29 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chopra S., Rao M.R.: The Steiner tree problem 1: formulations, compositions, and extension of facets. Math. Program. 64, 209–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chopra S., Rao M.R.: The Steiner tree problem 2: properties and classes of facets. Math. Program. 64, 231–246 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Didi Biha M., Kerivin H., Mahjoub A.R.: Steiner trees and polyhedra. Discrete Appl. Math. 112(1–3), 101–120 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dreyfus S.E., Wagner R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Edmonds J.: Optimum branchings. J. Res. Nat. Bur. Stand. B 71, 233–240 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Fulkerson D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1, 168–194 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garey M.R., Johnson D.S.: The rectilinear Steiner tree problem is NP complete. SIAM J. Appl. Math. 32, 826–834 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbert E.N., Pollak H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goemans M.X.: The Steiner tree polytope and related polyhedra. Math. Program. 63(2), 157–182 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goemans M.X., Bertsimas D.: Survivable networks, linear programming relaxations and the parsimonious property. Math. Program. 60, 145–166 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goemans M.X., Myung Y.: A catalog of Steiner tree formulations. Networks 23, 19–28 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goemans M.X., Williamson D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (eds) Approximation Algorithms for NP-hard Problems, chapter 4, PWS, Boston (1997)

    Google Scholar 

  21. Gröpl C., Hougardy S., Nierhoff T., Prömel H.J.: Approximation algorithms for the Steiner tree problem in graphs. In: Cheng, X., Du, D. (eds) Steiner trees in industries, pp. 235–279. Kluwer Academic Publishers, Norvell, Massachusetts (2001)

    Google Scholar 

  22. Hougardy, S., Prömel, H.J.: A 1.598 approximation algorithm for the Steiner problem in graphs. In: Proc. 10th SODA, pp. 448–453 (1999)

  23. Jain K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (1998) [Preliminary version appeared in Proc. 39th FOCS. 448–457 (1998)]

    Article  Google Scholar 

  24. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, NY, (1972)

  25. Karpinski M., Zelikovsky A.: New approximation algorithms for the Steiner tree problems. J. Comb. Optim. 1(1), 47–65 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Könemann J., Leonardi S., Schäfer G., van Zwam S.H.M.: A group-strategyproof cost sharing mechanism for the Steiner forest game. SIAM J. Comput. 37(5), 1319–1341 (2008) [Preliminary version appeared in Proc. 16th SODA. 612–619 (2005)]

    Article  MathSciNet  MATH  Google Scholar 

  27. Könemann, J., Pritchard, D.: Uncrossing partitions. Technical Report CORR 2007-11. Department of Combinatorics & Optimization, University of Waterloo (2007)

  28. Könemann, J., Pritchard, D., Wei, Y.: Filtering for the Steiner tree problem. Manuscript (2008)

  29. Korte B., Vygen J.: Combinatorial Optimization. Springer, New York (2008)

    Google Scholar 

  30. Kruskal J.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  31. Polzin, T.: Algorithms for the Steiner Problem in Networks. Ph.D. thesis, Universität des Saarlandes (February 2003)

  32. Polzin, T., Daneshmand, S.V.: Primal-dual approaches to the Steiner problem. In: Proc. 3rd APPROX, pp. 214–225 (2000)

  33. Polzin T., Vahdati Daneshmand S.: A comparison of Steiner tree relaxations. Discrete Appl. Math. 112(1–3), 241–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Polzin T., Vahdati Daneshmand S.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Polzin T., Vahdati Daneshmand S.: On Steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31(1), 12–20 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Prömel H.J., Steger A.: A new approximation algorithm for the Steiner tree problem with performance ratio 5/3. J. Algorithms. 36(1), 89–101 (2000) [Preliminary version appeared in Proc. 14th STACS. 559–570 (1997)]

    Article  MathSciNet  MATH  Google Scholar 

  37. Prömel H.J., Steger A.: The Steiner Tree Problem—A Tour through Graphs, Algorithms, and Complexity. Vieweg Verlag, Braunschweig-Wiesbaden (2002)

    MATH  Google Scholar 

  38. Rajagopalan, S., Vazirani, V.V.: On the bidirected cut relaxation for the metric Steiner tree problem. In: Proc. 10th SODA, pp. 742–751 (1999)

  39. Rizzi R.: On Rajagopalan and Vazirani’s 3/2-approximation bound for the Iterated 1-Steiner heuristic. Inf. Process. Lett. 86(6), 335–338 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Robins G., Zelikovsky A.: Tighter bounds for graph Steiner tree approximation. SIAM J. Discrete Math. 19(1), 122–134 (2005) [Preliminary version appeared in Proc. 11th SODA. 770–779 (2000)]

    Article  MathSciNet  MATH  Google Scholar 

  41. Skutella, M.: Personal communication (2006)

  42. Vazirani V.: Recent results on approximating the Steiner tree problem and its generalizations. Theoret. Comput. Sci. 235(1), 205–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vazirani V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

  44. Warme D.: A new exact algorithm for rectilinear Steiner trees. In: Pardalos, P., Du, D.-Z. (eds) Network Design: Connectivity and Facilities Location, pp. 357–395. American Mathematical Society, New York (1997)

    Google Scholar 

  45. Warme, D.: Spanning Trees in Hypergraphs with Applications to Steiner Trees. Ph.D. thesis, University of Virginia (1998)

  46. Wong R.T.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28, 271–287 (1984)

    Article  MATH  Google Scholar 

  47. Zelikovsky, A.: Better approximation bounds for the network and Euclidean Steiner tree problems. Technical Report CS-96-06. University of Virginia, Charlottesville, VA, USA (1996)

  48. Zelikovsky A.Z.: An 11/6-approximation algorithm for the network Steiner problem. Algorithmica 9, 463–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Könemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Könemann, J., Pritchard, D. & Tan, K. A partition-based relaxation for Steiner trees. Math. Program. 127, 345–370 (2011). https://doi.org/10.1007/s10107-009-0289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0289-2

Mathematics Subject Classification (2000)

Navigation