Skip to main content
Log in

Complete characterizations of stable Farkas’ lemma and cone-convex programming duality

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We establish necessary and sufficient conditions for a stable Farkas’ lemma. We then derive necessary and sufficient conditions for a stable duality of a cone-convex optimization problem, where strong duality holds for each linear perturbation of a given convex objective function. As an application, we obtain stable duality results for convex semi-definite programs and convex second-order cone programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh F., Goldfarb D. (2003). Second-order cone programming. Math. Program. Ser. B 95: 3–51

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersen E.D., Roos C., Terlaky T. (2002). Notes on duality in second order and p-order cone optimization. Optimization 51: 627–643

    Article  MATH  MathSciNet  Google Scholar 

  3. Barbu, V., Precupanu, Th.: Convexity and Optimization in Banach Spaces, D. Reidel Publishing Company, Durdrecht (1986)

  4. Bot R.I., Wanka G. (2005). Farkas-type results with conjugate functions. SIAM J. Optim. 15: 540–554

    Article  MATH  MathSciNet  Google Scholar 

  5. Bot R.I., Wanka G. (2006). An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. Theory Methods Appl. 64(6): 1367–1381

    Article  MATH  MathSciNet  Google Scholar 

  6. Burachik R.S., Jeyakumar V. (2005). Dual condition for the convex subdifferential sum formula with applications. J. Convex Anal. 12: 279–290

    MATH  MathSciNet  Google Scholar 

  7. Craven B.D. (1995). Control and Optimization. Champman and Hall, London

    MATH  Google Scholar 

  8. Dinh N., Jeyakumar V., Lee G.M. (2005). Sequential Lagrangian conditions for convex programs with applications to semidefinite programming. J. Optim. Theory Appl. 125: 85–112

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinh N., Goberna M.A., López M.A. (2006). From linear to convex systems: Consistency, Farkas’ Lemma and application. J. Convex Anal. 13: 1–21

    MathSciNet  Google Scholar 

  10. Glover B.M. (1982). A generalized Farkas lemma with applications to quasidifferentiable programming. Z. Oper. Res. Ser. A-B 26: 125–141

    MATH  MathSciNet  Google Scholar 

  11. Goberna M.A., López M.A. (1998). Linear Semi-infinite optimization. Wiley, Chichester

    MATH  Google Scholar 

  12. Gwinner J., Pomerol J.-C. (1989). On weak* closedness, coerciveness and inf-sup theorems. Arch. Math., 52: 159–167

    Article  MATH  MathSciNet  Google Scholar 

  13. Gwinner, J., Jeyakumar, V.: Stable minimax on noncompact sets, fixed point theory and applications (Marseille 1989), pp. 215–220 Pitman Res. Notes Math. Ser. 255 Longman Sci. Tech. Harlow (1991)

  14. Gwinner J. (1987). Results of Farkas type. Numer. Funct. Anal. Optim. 9: 471–520

    Article  MATH  MathSciNet  Google Scholar 

  15. Gwinner J. (1987). Corrigendum and addendum to Results of Farkas type. Numer. Funct. Anal. Optim. 10: 415–418

    Article  Google Scholar 

  16. Jeyakumar, V.: Farkas Lemma: Generalizations, Encyclopedia of Optimization, vol. 2, pp. 87–91. Kluwer, Boston (2001)

  17. Jeyakumar V. (2006). The strong conical hull intersection property for convex programming. Math. Program. Ser. A 106: 81–92

    Article  MATH  MathSciNet  Google Scholar 

  18. Jeyakumar V., Glover B.M. (1995). Nonlinear extensions of Farkas lemma with applications to global optimization and least squares. Math. Oper. Res. 20(4): 818–837

    Article  MATH  MathSciNet  Google Scholar 

  19. Jeyakumar V., Lee G.M., Dinh N. (2006). Characterization of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174: 1380–1395

    Article  MATH  MathSciNet  Google Scholar 

  20. Jeyakumar V., Rubinov A.M., Glover B.M., Ishizuka Y. (1996). Inequality systems and global optimization. J. Math. Anal. Appl. 202: 900–919

    Article  MATH  MathSciNet  Google Scholar 

  21. Lobo M.S., Vandenberghe L., Boyd S., Lebret H. (1998). Applications of second-order cone programming. Linear Algebra Appl. 284: 193–228

    Article  MATH  MathSciNet  Google Scholar 

  22. Precupanu T. (1984). Closedness conditions for the optimality of a family of non-convex optimization problems. Math. Operationsforsch. Statist. Ser. Optim. 15: 339–346

    MATH  MathSciNet  Google Scholar 

  23. Zalinescu C. (2002). Convex Analysis in General Vector Space. World Scientific Publishing, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jeyakumar.

Additional information

The authors are grateful to the referees for their valuable suggestions and helpful detailed comments which have contributed to the final preparation of the paper. The first author was supported by the Australian Research Council Linkage Program. The second author was supported by the Basic Research Program of KOSEF (Grant No. R01-2006-000-10211-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeyakumar, V., Lee, G.M. Complete characterizations of stable Farkas’ lemma and cone-convex programming duality. Math. Program. 114, 335–347 (2008). https://doi.org/10.1007/s10107-007-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0104-x

Keywords

Mathematics Subject Classification (2000)

Navigation