Skip to main content
Log in

Bounds on linear PDEs via semidefinite optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract

Using recent progress on moment problems, and their connections with semidefinite optimization, we present in this paper a new methodology based on semidefinite optimization, to obtain a hierarchy of upper and lower bounds on linear functionals defined on solutions of linear partial differential equations. We apply the proposed method to examples of PDEs in one and two dimensions, with very encouraging results. We pay particular attention to a PDE with oblique derivative conditions, commonly arising in queueing theory. We also provide computational evidence that the semidefinite constraints are critically important in improving the quality of the bounds, that is, without them the bounds are weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.: The classical moment problem, Eng. Ed., Oliver and Boyd, London 1965

  2. Bertsimas, D.: The achievable region method in the optimal control of queueing systems; formulations, bounds and policies. Queueing Systems and Applications 21 (3–4), 337–389 (1995)

    Google Scholar 

  3. Bertsimas, D., Paschalidis, I., Tsitsiklis, J.: Optimization of multiclass queueing networks: polyhedral and nonlinear characterizations of achievable performance. Ann. Appl. Prob. 4 (2), 43–75 (1994)

    MathSciNet  Google Scholar 

  4. Bertsimas, D., Popescu, I.: Optimal inequalities in probability theory: a convex optimization approach. SIAM Journal of Optimization 15, 780–804 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Operations Research 50 (2), 358–374 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.: Real algebraic geometry, Springer–Verlag, Berlin Heidelberg, 1998

  7. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer–Verlag, New York, 1991

  8. Fujisawa, K., Kojima, M., Nakata, K.: SDPA (Semidefinite Programming Algorithm) User's Manual, Version 4.10, Research Report on Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan, 1998

  9. Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension II. Amer. J. Math. 58, 164–168 (1936)

    MATH  MathSciNet  Google Scholar 

  10. Harrison, J.M.: The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Prob. 10, 886–905 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harrison, J.M., Landau, H.J., Shepp, L.A.: The stationary distribution of reflected Brownian motion in a planar region. Ann. Prob. 13, 744–757 (1985)

    MATH  MathSciNet  Google Scholar 

  12. Kumar, S., Kumar, P.R.: Performance bounds for queueing networks and scheduling policies. IEEE Trans. on Aut. Control 39, 1600–1611 (1994)

    Article  MATH  Google Scholar 

  13. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lasserre, J.B.: Bounds on measures satisfying moment conditions. Annals Appl. Prob. 12, 1114–1137 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Paraschivoiu, M., Patera, A.: A Hierarchical Duality Approach to Bounds for the Outputs of Partial Differential Equations. Comput. Methods Appl. Eng. 158, 389–407 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Paraschivoiu, M., Peraire, J., Patera, A.: A Posteriori Finite Element Bounds for Linear–Functional Outputs of Elliptic Partial Differential Equations. Comput. Meth. Appl. Mech. Eng. 150, 289–312 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parrilo, P.: Semidefinite programming relaxations for semi-algebraic problems. Math. Programming Ser. B 96, 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Peraire, J., Patera, A.: Bounds for linear-functional outputs of coercive partial differential equations: Local indicators and adaptive refinement. New Advances in Adaptive Computational Methods in Mechanics, available at http://raphael.mit.edu/peraire/, 1997

  19. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer–Verlag, Berlin, 1997

  20. Reznick, B.: Some concrete aspects of Hilbert's 17th problem. In: Delzell, C.N., Madden, J.J. (eds.), Real Algebraic Geometry and Ordered Structures. Cont. Math. 2000, p 253

  21. Schwerer, E.: A Linear Programming Approach to the Steady–State Analysis of Markov Processes. Palo Alto, CA: Ph.D. Thesis, Stanford University, 1996

  22. Schmüdgen, K.: The K–moment problem for compact semi–algebraic sets. Math. Ann. 289, 203–206 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Strang, G., Fix, G.: An Analysis of the Finite Element Method, Prentice–Hall, Englewood Cliffs, NJ, 1973

  24. Sturm, J.: SeDuMi Semidefinite Software, http://www/unimaas.nl/sturm

  25. Trefethen, L.N., Williams, R.J.: Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary conditions.'' J. Comp. and App. Math. 14, 227–249 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vandenberghe, L., Boyd, S.: Semidefinite Programming. SIAM Review 38, 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Varadhan, S.R.S., Williams, R.J.: Brownian motion in a wedge with oblique reflection. Comm. Pure. Appl. Math. 38, 405–443 (1985)

    MATH  MathSciNet  Google Scholar 

  28. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd Edition, The Macmillan Company, Cambridge, 1994

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Bertsimas.

Additional information

Research supported by the SMA-MI Talliance.

Research partially supported by the SMA-MIT alliance and an NSF predoctoral fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsimas, D., Caramanis, C. Bounds on linear PDEs via semidefinite optimization. Math. Program. 108, 135–158 (2006). https://doi.org/10.1007/s10107-006-0702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0702-z

Keywords

Navigation