Skip to main content
Log in

Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we present an extension of Moreau’s sweeping process for higher order systems. The dynamical framework is carefully introduced, qualitative, dissipativity, stability, existence, regularity and uniqueness results are given. The time-discretization of these nonsmooth systems with a time-stepping algorithm is also presented. This differential inclusion can be seen as a mathematical formulation of complementarity dynamical systems with arbitrary dimension and arbitrary relative degree between the complementary-slackness variables. Applications of such high-order sweeping processes can be found in dynamic optimization under state constraints and electrical circuits with ideal diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M.: Generation of feasible descent directions in continuous time linear programming. Technical Report SOL 83-18, Systems Optimization Laboratory, Dept. of Operations Research, Stanford University (1983)

  2. Arutyunov A.V., Aseev S.M. (1995) State constraints in optimal control. The degeneracy phenomenon. Systems Control Lett. 26, 267–273

    Article  MATH  MathSciNet  Google Scholar 

  3. Aubin J.P., Cellina A. (1994) Differential Inclusions. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Ballard P. (2000) The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Rational Mech. Anal. 154, 199–274

    Article  MATH  MathSciNet  Google Scholar 

  5. Benabdellah H., Castaing C., Salvadori A., Syam A. (1996) Nonconvex sweeping process. J. Appl. Anal. 2(2):217–240

    Article  MATH  MathSciNet  Google Scholar 

  6. Berman A. (1979) Plemmons: Nonnegative Matrices in The Mathematical Sciences. Computer Science and Applied Mathematics. Academic, New York

    Google Scholar 

  7. Brezis H. (1973) Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland, Amsterdam

    Google Scholar 

  8. Brogliato B. (1999) Nonsmooth Mechanics, 2nd edn. Springer, London

    MATH  Google Scholar 

  9. Brogliato B. (2003) Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Autom. Control 48(6), 918–935

    Article  MathSciNet  Google Scholar 

  10. Brogliato B. (2004) The absolute stability problem and the Lagrange–Dirichlet theorem with monotone multivalued mappings. Systems Control Lett. 51(5):343–353

    Article  MATH  MathSciNet  Google Scholar 

  11. Brogliato B. (2005) Some results on the controllability of planar variational inequalities. Systems Control Lett. 54: 65–71

    Article  MATH  MathSciNet  Google Scholar 

  12. Brogliato B., Daniilidis A., Lemaréchal C., Acary V. (2006) On the equivalence between complementarity systems, projected systems and differential inclusions. Systems Control Lett. 55(1):45–51

    Article  MATH  MathSciNet  Google Scholar 

  13. Brogliato B., Lozano R., Maschke B., Egeland O. (2006) Dissipative Systems Analysis and Control. Theory and Applications. 2nd edn. Springer, London

    Google Scholar 

  14. Brogliato B., Niculescu S., Orhant P. (1997) On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Trans. Autom. Control 42(2):200–215

    Article  MATH  MathSciNet  Google Scholar 

  15. Brogliato B., ten Dam A.A., Paoli L., Genot F., Abadie M. (2002) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl. Mech. Rev. 55(2):107–150

    Article  Google Scholar 

  16. Camlibel K., Heemels W.P.M.H., Schumacher J.M. (2002) Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuits Systems I 49, 349–357

    Article  MathSciNet  Google Scholar 

  17. Camlibel K., Heemels W.P.M.H., Schumacher J.M. (2002) On linear passive complementarity systems. Eur. J. Control 8(3):220–237

    Article  Google Scholar 

  18. Castaing C., Duc Ha T.X., Valadier M. (1993) Evolution equations governed by the sweeping process. Set-Valued Anal. 1, 109–139

    Article  MATH  MathSciNet  Google Scholar 

  19. Castaing C., Monteiro-Marques M.D.P. (1996) Evolution problems associated with nonconvex closed moving sets with bounded variation. Portugaliae Math. 1, 73–87

    MathSciNet  Google Scholar 

  20. Cobb D. (1982) On the solution of linear differential equations with singular coefficients. J. Differ. Equ. 46, 310–323

    Article  MATH  MathSciNet  Google Scholar 

  21. Evans L.C., Gariepy R.F. (1992) Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton

    Google Scholar 

  22. Facchinei F., Pang J.-S. (2003) Finite-Dimensional Variational Inequalities and Complementarity Problems, vol I & II of Springer Series in Operations Research. Springer, Berlin Heidelberg New York

    Google Scholar 

  23. Goeleven D., Brogliato B. (2004) Stability and instability matrices for linear evolution variational inequalities. IEEE Trans. Autom. Control 49(4):521–534

    Article  MathSciNet  Google Scholar 

  24. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, vol. I: Unilateral Analysis and Unilateral Mechanics. Nonconvex Optimization and its Applications. Kluwer(2003)

  25. Hartl R.F., Sethi S.P., Vickson R.G. (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181–218

    Article  MATH  MathSciNet  Google Scholar 

  26. Heemels, W.P.M.H.: Linear Complementarity Systems. A Study in Hybrid Dynamics. PhD thesis, Technical University of Eindhoven (1999). ISBN 90-386-1690-2

  27. Heemels W.P.M.H., Brogliato B. (2003) The complementarity class of hybrid dynamical systems. Eur. J. Control 9, 311–349

    Google Scholar 

  28. Heemels W.P.M.H., Schumacher J.M., Weiland S. (2000) Linear complementarity problems. SIAM J. Appl. Math. 60(4):1234–1269

    Article  MATH  MathSciNet  Google Scholar 

  29. Imura J.I. (2003) Well-posedness analysis of switch-driven piecewise affine systems. IEEE Trans. Autom. Control 48(11):1926–1935

    Article  MathSciNet  Google Scholar 

  30. Jean, M.: The non smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999). Special issue on computational modeling of contact and friction, Martins, J.A.C., Klarbring, A. (eds.)

    Google Scholar 

  31. Juloski, A., Heemels, W.P.M.H., Brogliato, B.: Observer design for Lur’e systems with multivalued mappings. In: IFAC World Congress Prague, 4–8 July 2005

  32. Krejci P., Vladimorov A. (2003) Polyhedral sweeping processes with oblique reflection in the space of regulated functions. Set-Valued Anal 11, 91–110

    Article  MATH  MathSciNet  Google Scholar 

  33. Kunze M., Monteiro Marques M.D.P. (1997) Existence of solutions for degenerate sweeping processes. J. Convex Anal. 4, 165–176

    MATH  MathSciNet  Google Scholar 

  34. Kunze M., Monteiro Marques M.D.P. (1998) On parabolic quasi-variational inequalities and state-dependent sweeping processes. Topol Methods Nonlinear Anal. 12, 179–191

    MATH  MathSciNet  Google Scholar 

  35. Kunze M., Monteiro Marques M.D.P. (2000) An introduction to Moreau’s sweeping process. In: Brogliato B. (eds) Impact in Mechanical systems: Analysis and Modelling, Lecture Notes in Physics vol. 551. Springer, Berlin Heidelberg New York, pp. 1–60

    Google Scholar 

  36. Kunze M., Monteiro MarquFs M.D.P. (1996) Yosida-Moreau regularisation of sweeping processes with unbounded variation. J. Differ. Equ. 130, 292–306

    Article  MATH  Google Scholar 

  37. Liu W.Q., Lan W.Y., Teo K.L. (1995) On initial instantaneous jumps of singular systems. IEEE Trans. Autom. Control 40(9):1650–1655

    Article  MATH  Google Scholar 

  38. Lootsma Y.J., van der Schaft A.J., Camlibel K. (1999) Uniqueness of solutions of relay systems. Automatica 35(3):467–478

    Article  MATH  MathSciNet  Google Scholar 

  39. Lotstedt P. (1982) Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2):281–296

    Article  MathSciNet  Google Scholar 

  40. Mabrouk M. (1998) A unified variational for the dynamics of perfect unilateral constraints. Eur. J. Mech. A/Solids 17, 819–842

    Article  MATH  MathSciNet  Google Scholar 

  41. Machanda P., Siddiqi A.H. (2002) Rate dependent evolution quasivariational inequalities and state-dependent sweeping processes. Adv. in Nonlinear Var. Inequal. 5(1):1–16

    Google Scholar 

  42. Monteiro Marques, M.P.D.: Differential Inclusions in NonSmooth Mechanical Problems: Shocks and Dry Friction. Birkhauser (1993)

  43. Moreau J.J. (1963) Les liaisons unilatérales et le principe de Gauss. Comptes Rendus de l’ des Sci 256, 871–874

    MathSciNet  Google Scholar 

  44. Moreau J.J. (1966) Quadratic programming in mechanics: dynamics of one sided constraints. SIAM J. Control 4(1):153–158

    Article  MathSciNet  Google Scholar 

  45. Moreau, J.J.: Rafle par un convexe variable (première partie), exposé no 15. Séminaire d’analyse convexe, University of Montpellier, 43 pp (1971)

  46. Moreau, J.J.: Rafle par un convexe variable (deuxième partie) exposé no 3. Séminaire d’analyse convexe, University of Montpellier, 36 pp (1972)

  47. Moreau J.J. (1973) Problme d’évolution associć a un convexe mobile d’un espace hilbertien. Comptes Rendus de l’AcadTmie des Sci, Séries A-B, t.276, 791–794

    MathSciNet  Google Scholar 

  48. Moreau J.J. (1977) Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26, 347–374

    Article  MATH  MathSciNet  Google Scholar 

  49. Moreau, J.J.: Approximation en graphe d’une évolution discontinue. RAIRO Analyse numérique/ Numer. Anal. 12, 75–84 (1978)

  50. Moreau, J.J.: Liaisons unilatérales sans frottement et chocs inélastiques. Comptes Rendus de l’AcadTmie des Sci. 296 serie II, 1473–1476 (1983)

  51. Moreau J.J. (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J.J., Panagiotopoulos P.D. (eds) Nonsmooth Mechanics and Applications, CISM, Courses and Lectures, vol 302. Springer, Berlin Heidelberg New York, pp. 1–82

    Google Scholar 

  52. Moreau J.J. (1994) Some numerical methods in multibody dynamics: Application to granular materials. Eur. J. Mech. A/Solids supp.(4):93–114

    MathSciNet  Google Scholar 

  53. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177, 329–349 (1999). Special issue on computational modeling of contact and friction, Martins, J.A.C., Klarbring, A. (eds.)

  54. Moreau J.J. (2003) An introduction to unilateral dynamics. In: FrTmond M., Maceri F. (eds) Novel Approaches in Civil Engineering, Series: Lecture Notes in Applied and Computational Mechanics. Springer, Berlin Heidelberg New York

    Google Scholar 

  55. Pang, J.S., Stewart, D.: Differential variational inequalities. Preprint (2004)

  56. Perold, A.: Fundamentals of a continuous time simplex method. Technical Report SOL 78-26, Systems Optimization Laboratory, Dept. of Operations Research, Stanford University (1978)

  57. Pogromsky A.Y., Heemels W.P.M.H., Nijmeijer H. (2003) On solution concepts and well-posedness of linear relay systems. Automatica 39(12):2139–2147

    Article  MATH  MathSciNet  Google Scholar 

  58. Saberi A., Sannuti P. (1987) Cheap and singular controls for linear quadratic regulators. IEEE Trans. Autom. Control 32(3):208–219

    Article  MATH  MathSciNet  Google Scholar 

  59. Sain M.K., Massey J.L. (1969) Invertibility of linear time-invariant dynamical systems. IEEE Trans. Autom. Control 14(2):141–149

    Article  MathSciNet  Google Scholar 

  60. Sannuti P. (1983) Direct singular pertubation analysis of high gain and cheap control problem. Automatica 19(1):424–440

    Article  Google Scholar 

  61. Sannuti P., Saberi A. (1987) Special coordinate basis for multivariable linear systems—finite and infinite zero structure, squaring down and decoupling. Int. J. Control 45(5):1655–1704

    Article  MATH  MathSciNet  Google Scholar 

  62. Sannuti P., Wason H. (1985) Multiple time-scale decomposition in cheap control problemes—singular control. IEEE Trans. Autom. Control 30(7):633–644

    Article  MATH  MathSciNet  Google Scholar 

  63. Schatzman M. (1973) Sur une classe de problémes hyperboliques non linéaires. Comptes Rendus de l’Académie des Sci Série A 277, 671–674

    MATH  MathSciNet  Google Scholar 

  64. Schatzman M. (1978) A class of nonlinear differential equations of second order in time. Nonlinear Anal. Theory Methods Appl. 2(3):355–373

    Article  MATH  MathSciNet  Google Scholar 

  65. Schwartz, L.: Analyse III, Calcul Intégral. Hermann (1993)

  66. Shilov, G.E., Gurevich, B.L.: Integral Measure and Derivative. A Unified Approach. , Englewood Cliffs, (1966). Hermann, Paris (1993)

  67. Siddiqi A.H., Machanda P. (2002) Variants of Moreau’s sweeping process. Adv. Nonlinear Var. Inequal. 5(1):17–28

    MATH  MathSciNet  Google Scholar 

  68. Siddiqi, A.H., Machanda, P., Brokate, M.: On some recent developments concerning Moreau’s sweeping process. In: Siddiqi, A.H., Kocvara, M. (eds.) International Conference on Emerging Areas in Industrial and applied mathematics. GNDU Amritsar, India. Kluwer (2001)

  69. Stewart D. (1998) Convergence of a time-stepping scheme for rigid-body dynamics and resolution of PainlevT’s problem. Archi. Rational Mech. Anal. 145, 215–260

    Article  MATH  Google Scholar 

  70. Stewart D. (2000) Rigid body dynamics with friction and impact. SIAM Rev. 42(1):3–39

    Article  MATH  MathSciNet  Google Scholar 

  71. ten Dam A.A., Dwarshuis E., Willems J.C. (1997) The contact problem for linear continuous-time dynamical systems: a geometric approach. IEEE Trans. Autom. Control 42(4):458–472

    Article  MATH  MathSciNet  Google Scholar 

  72. Thibault L. (2003) Sweeping process with regular and nonregular sets. J. Differ. Equ. 193(1):1–26

    Article  MATH  MathSciNet  Google Scholar 

  73. van der Schaft A.J., Schumacher J.M. (2000) An Introduction to Hybrid Dynamical Systems. Springer, London

    MATH  Google Scholar 

  74. van Der Schaft A.J., Schumacher J.M. (1996) The complementary-slackness class of hybrid systems. Math Control Signals Systems 9(3):266–301

    Article  MATH  MathSciNet  Google Scholar 

  75. van der Schaft A.J., Schumacher J.M. (1998) Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43(4):483–490

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acary, V., Brogliato, B. & Goeleven, D. Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation. Math. Program. 113, 133–217 (2008). https://doi.org/10.1007/s10107-006-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0041-0

Keywords

Navigation