Skip to main content
Log in

Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints

  • Published:
Mathematical Programming Submit manuscript

Abstract.

Generalized stationary points of the mathematical program with equilibrium constraints (MPEC) are studied to better describe the limit points produced by interior point methods for MPEC. A primal-dual interior-point method is then proposed, which solves a sequence of relaxed barrier problems derived from MPEC. Global convergence results are deduced under fairly general conditions other than strict complementarity or the linear independence constraint qualification for MPEC (MPEC-LICQ). It is shown that every limit point of the generated sequence is a strong stationary point of MPEC if the penalty parameter of the merit function is bounded. Otherwise, a point with certain stationarity can be obtained. Preliminary numerical results are reported, which include a case analyzed by Leyffer for which the penalty interior-point algorithm failed to find a stationary point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiyoshi, E., Shimizu, K.: Hierarchical decentralized systems and its new solution by a barrier method. IEEE Trans. Syst., Man, Cybern., SMC 11, 444–449 (1981)

    Google Scholar 

  2. Anandalingam, G., Friesz, T.L., eds.: Hierarchical Optimization. Ann. Oper. Res., 1992

  3. Bard, J.F.: Convex two-level optimization. Math. Program. 40, 15–27 (1988)

    MathSciNet  MATH  Google Scholar 

  4. Ben-Ayed, O., Blair, C.E.: Computational difficulties of bilevel linear programming. Oper. Res. 38, 556–559 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Benson, H.Y., Sen, A., Shanno, D.F., Vanderbei, R.J.: Interior-point algorithms, penalty methods and equilibrium problems. Technical Report ORFE-03–02, Operations Research and Financial Engineering, Princeton University, 2003

  6. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: complementarity constraints. Research report ORFE-02–02, Operations Research and Financial Engineering, Princeton University, 2002

  7. Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior-point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9, 877–900 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Florian, M.: The nonlinear bilevel programming problem: Formulations, regularity and optimality conditions. Optim. 32, 193–209 (1995)

    MATH  Google Scholar 

  9. Clark, P.A., Westerberg, A.W.: A note on the optimality conditions for the bilevel programming problem. Naval Research Logistics Quarterly 35, 413–418 (1988)

    MATH  Google Scholar 

  10. DeMiguel, A.V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: An interior point method for mpecs. Technical Report, London Business School, 2003

  11. Dirkse, S.P., Ferris, M.C., Meeraus, A.: Mathematical programs with equilibrium constraints: Automatic reformulation and solution via constraint optimization. Tech. Report NA-02/11, Oxford University Computing Lab, 2002

  12. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program., Ser. A 91, 201–213 (2002)

    Google Scholar 

  13. Facchinei, F., Jiang, H.Y., Qi, L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program. 85, 107–134 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falk, J.E., Liu, J.: On bilevel programming, part I: general nonlinear cases. Math. Program. 70, 47–72 (1995)

    Article  MathSciNet  Google Scholar 

  15. Fletcher, R., Leyffer, S.: Numerical experience with solving MPECs by nonlinear programming methods. Numerical Analysis Report NA/YYY, Dept. of Math., Univ. of Dundee, UK, 2001

  16. Fletcher, R., Leyffer, S., Ralph, D., Scholtes, S.: Local convergence of SQP methods for mathematical programs with equilibrium constraints. Numerical Analysis Report NA/209, Dept. of Math., Univ. of Dundee, UK, 2002

  17. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Second Edition, THOMSON, Brooks/cole, 2003

  18. Fukushima, M., Luo, Z.-Q., Pang, J.-S.: A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints. Comput. Optim. Appl. 10, 5–34 (1998)

    Article  MathSciNet  Google Scholar 

  19. Fukushima, M., Pang, J.-S.: Some feasibility issues in mathematical programs with equilibrium constraints. SIAM J. Optim. 8, 673–681 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukushima, M., Pang, J.-S.: Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: Ill-posed Variational Problems and Regularization Techniques, M. Theŕa, R. Tichatschke, (eds.), Springer-Verlag, New York, 1999, pp. 99–110

  21. Fukushima, M., Tseng, P.: An implementable active-set algorithm for computing a B-stationary point of a mathematical program with linear complementarity constraints. SIAM J. Optim. 12, 724–739 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gay, D.M.: Hooking your solver to AMPL. Preprint, Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, 2000

  23. Gay, D.M., Overton, M.L., Wright, M.H.: A Primal-Dual interior method for nonconvex nonlinear programming. Advances in nonlinear programming: Proceedings of the 96 International conference on nonlinear programming, Y. Yuan, (ed.), Kluwer Academic Publishers, 1998

  24. Gould, N.I.M., Orban, D., Sartenaer, A., Toint, Ph.L.: Superlinear convergence of primal-dual interior-point algorithms for nonlinear programming. SIAM J. Optim. 11, 974–1002 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harker, P.T., Pang, J.-S.: On the existence of optimal solutions to mathematical program with equilibrium constraints. Oper. Res. Lett. 7, 61–64 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harker, P.T., Pang, J.-S.: Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program., Ser. B 48, 161–220 (1990)

    Google Scholar 

  27. Huang, J., Pang, J.-S.: A mathematical programming with equilibrium constraints approach to the implied volatility surface of American options. Research Report, The Johns Hopkins Univ., 2001

  28. Jiang, H.Y., Ralph, D.: Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. SIAM J. Optim. 10, 779–808 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leyffer, S.: The penalty interior point method fails to converge for mathematical programs with equilibrium constraints. Numerical analysis report NA/208, Department of Math., University of Dundee, 2002

  30. Leyffer, S.: MacMPEC - www-unix.mcs.anl.gov/leyffer/MacMPEC/. 2002

  31. Leyffer, S.: Complementarity constraint as nonlinear equation: Theory and numerical experience. Preprint, MCS Division, Argonne National Lab, 2003

  32. Liu, X.-W., Sun, J.: A robust primal-dual interior point algorithm for nonlinear programs. Accepted for publication in SIAM J. Optim.

  33. Liu, X.-W., Sun, J.: Global convergence analysis of line search interior point methods for nonlinear programming without regularity assumptions. Accepted for publication in J. Optim. Theory Appl.

  34. Liu, X.-W., Yuan, Y.-X.: A robust algorithm for optimization with general equality and inequality constraints. SIAM J. Sci. Comput. 22, 517–534 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luo, Z.-Q., Pang, J.-S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, 1996

  36. Marcotte, P.: Network design problem with congestion effects: A case of bilevel programming. Math. Program. 34, 142–162 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Outrata, J.V.: On optimization problems with variational inequality constraints. SIAM J. Optim. 4, 340–357 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Outrata, J.V., Zowe, J.: A numerical approach to optimization problems with variational inequality constraints. Math. Program. 68, 105–130 (1995)

    Article  MathSciNet  Google Scholar 

  39. Pang, J.-S., Fukushima, M.: Complementarity constraint qualifications and simplified B-stationarity conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13, 111–136 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Raghunathan, A.U., Biegler, L.T.: An interior point method for mathematical programs with complementarity constraints. Technical Report, Department of Chemical Engineering, Carnegie Mellon University, 2003

  41. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Scholtes, S., Scheel, H.: Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Scholtes, S., Stöhr, M.: Exact penalization of mathematical programs with equilibrium constraints. SIAM J. Control Optim. 37, 617–652 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Scholtes, S., Stöhr, M.: How stringent is the linear independence assumption for mathematical programs with complementarity constraints. Math. Oper. Res. 26, 851–863 (2001)

    Article  MathSciNet  Google Scholar 

  45. Vicente, L.N., Calamai, P.: Bilevel and multilevel programming: A bibliography review. J. Global Optim. 5, 291–306 (1994)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Sun.

Additional information

Mathematics Subject Classification (1991):90C30, 90C33, 90C55, 49M37, 65K10

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Sun, J. Generalized stationary points and an interior-point method for mathematical programs with equilibrium constraints. Math. Program., Ser. A 101, 231–261 (2004). https://doi.org/10.1007/s10107-004-0543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0543-6

Keywords

Navigation