Skip to main content
Log in

Duality gaps in nonconvex stochastic optimization

  • Published:
Mathematical Programming Submit manuscript

Abstract.

We consider multistage stochastic optimization models containing nonconvex constraints, e.g., due to logical or integrality requirements. We study three variants of Lagrangian relaxations and of the corresponding decomposition schemes, namely, scenario, nodal and geographical decomposition. Based on convex equivalents for the Lagrangian duals, we compare the duality gaps for these decomposition schemes. The first main result states that scenario decomposition provides a smaller or equal duality gap than nodal decomposition. The second group of results concerns large stochastic optimization models with loosely coupled components. The results provide conditions implying relations between the duality gaps of geographical decomposition and the duality gaps for scenario and nodal decomposition, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, J.-P., Ekeland, I.: Estimates of the duality gap in nonconvex optimization. Math. Oper. Res. 1, 225–245 (1976)

    MATH  Google Scholar 

  2. Bacaud, L., Lemaréchal, C., Renaud, A., Sagastizábal, C.: Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners. Comput. Optim. Appl. 20, 227–244 (2001)

    Article  MATH  Google Scholar 

  3. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York, 1982

  4. Birge, J.R.: Decomposition and partitioning methods for multi-stage stochastic linear programs. Oper. Res. 33, 989–1007 (1985)

    MATH  Google Scholar 

  5. Birge, J.R., Dempster, M.A.H.: Stochastic programming approaches to stochastic scheduling. J. Global Optim. 9, 417–451 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birge, J.R. Louveaux, F.: Introduction to Stochastic Programming. Springer Series in Operation Research, Springer, New York, 1997

  7. Carøe, C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24, 37–45 (1999)

    Article  Google Scholar 

  8. Carøe, C., Tind, J.: L-shaped decomposition of two-stage stochastic programs with integer recourse. Math. Program. 83, 451–464 (1998)

    Article  Google Scholar 

  9. Carpentier, P., Cohen, G., Culioli, J.-C., Renaud, A.: Stochastic optimization of unit commitment: a new decomposition framework. IEEE Trans. Power Systems 11, 1067–1073 (1996)

    Article  Google Scholar 

  10. Dentcheva, D., Römisch, W.: Optimal power generation under uncertainty via stochastic programming. In: Stochastic Programming Methods and Technical Applications, K. Marti and P. Kall (eds.), Lecture Notes in Economics and Mathematical Systems Vol. 458, Springer, Berlin 1998, pp. 22–56

  11. Falk, J.E.: Lagrange multipliers and nonconvex programs. SIAM J. Control 7, 534–545 (1969)

    MATH  Google Scholar 

  12. Feltenmark, S., Kiwiel, K.C.: Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems. SIAM J. Optim. 10, 697–721 (2000)

    Article  MATH  Google Scholar 

  13. Geoffrion, A.M.: Lagrangian relaxation and its uses in integer programming. Math. Program. Study 2, 82–114 (1974)

    MATH  Google Scholar 

  14. Guignard, M., Kim, S.: Lagrangean decomposition: a model yielding stronger Lagrangean bounds. Math. Program. 39, 215–228 (1987)

    MATH  Google Scholar 

  15. Hemmecke, R., Schultz, R.: Decomposition of test sets in stochastic integer programming. Math. Program. 94, 323–341 (2003)

    Article  Google Scholar 

  16. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I and II. Springer, Berlin, 1993

  17. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Math. Program. 90, 399–427 (2001)

    Google Scholar 

  18. Nowak, M.P., Römisch, W.: Stochastic Lagrangian relaxation applied to power scheduling in a hydro-termal system under uncertainty. Ann. Oper. Res. 100, 251–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mulvey, J.M., Ruszczyński, A.: A new scenario decomposition method for large-scale stochastic optimization. Oper. Res. 43, 477–490 (1995)

    MATH  Google Scholar 

  20. Rockafellar, R.T.: Duality and optimality in multistage stochastic programming. Ann. Oper. Res. 85, 1–19 (1999)

    Article  MATH  Google Scholar 

  21. Rockafellar, R.T., Wets, R.J-B.: The optimal recourse problem in discrete time: L1-multipliers for inequality constraints. SIAM J. Control Optim. 16, 16–36 (1978)

    Google Scholar 

  22. Rockafellar, R.T., Wets, R.J-B.: Scenario and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16, 119–147 (1991)

    MATH  Google Scholar 

  23. Rockafellar, R.T., Wets, R.J-B.: Variational Analysis. Springer, Berlin, 1998

  24. Römisch, W., Schultz, R.: Multistage stochastic integer programs: an introduction. In: Online Optimization of Large Scale Systems, M. Grötschel, S.O. Krumke, J. Rambau (eds.), Springer, Berlin, 2001, pp. 579–598

  25. Rosa, C.H., Ruszczyński, A.: On augmented Lagrangian decomposition methods for multistage stochastic programs. Ann. Oper. Res. 64, 289–309 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Ruszczyński, A.: A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35, 309–333 (1986)

    Google Scholar 

  27. Ruszczyński, A.: On convergence of an augmented Lagrangian decomposition method for sparse convex optimization. Math. Oper. Res. 20, 634–656 (1995)

    Google Scholar 

  28. Ruszczyński, A.: Decomposition methods in stochastic programming. Math. Program. 79, 333–353 (1997)

    Article  Google Scholar 

  29. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester, 1986

  30. Sen, S., Higle, J.L., Birge, J.R.: Duality gaps in stochastic integer programming. J. Global Optim. 18, 189–194 (2000)

    Article  MATH  Google Scholar 

  31. Takriti, S., Birge, J.R.: Lagrangian solution techniques and bounds for loosely coupled mixed-integer stochastic programs. Oper. Res. 48, 91–98 (2000)

    Article  MATH  Google Scholar 

  32. Takriti, S., Krasenbrink, B., Wu, L.S.-Y.: Incorporating fuel constraints and electricity spot prices into the stochastic unit commitment problem. Oper. Res. 48, 268–280 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darinka Dentcheva.

Additional information

Mathematics Subject Classification (1991): 90C15

Acknowledgments. This work was supported by the Priority Programme Online Optimization of Large Scale Systems of the Deutsche Forschungsgemeinschaft. The authors wish to thank Andrzej Ruszczyński (Rutgers University) for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dentcheva, D., Römisch, W. Duality gaps in nonconvex stochastic optimization. Math. Program., Ser. A 101, 515–535 (2004). https://doi.org/10.1007/s10107-003-0496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0496-1

Keywords

Navigation