Skip to main content
Log in

Transcutaneous systemic photobiomodulation reduced lung inflammation in experimental model of asthma by altering the mast cell degranulation and interleukin 10 level

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Asthma is a chronic inflammatory disease characterized by recurrent and reversible episodes of wheezing, dyspnea, chest stiffness, and cough. Its treatment includes several drugs, high cost, and considerable side effects. Photobiomodulation (PBM) emerges as an alternative treatment, showing good results, and it can be applied locally or systemically. Here, we aim to evaluate the effect of transcutaneous systemic photobiomodulation (TSPBM) by red diode light. Therefore, adult rats were sensitized and challenged with ovalbumin (OVA) plus alum for induction of asthma and irradiated or not with TSPBM in the caudal vein (wavelength 660 ± 10 nm; total radiant emission 15 J; area 2.8 cm2; energy density 5.35 J/cm2; irradiance 33.3 mW/cm2; exposure time 150 s). Our investigations prioritized the cell migration into the alveolar space and lung, tracheal responsiveness, release and gene expression of cytokines, mast cell degranulation, and anaphylactic antibodies. Our results showed that TSPBM reduced the cell migration and mast cell degranulation without altering the tracheal responsiveness and ovalbumin antibody titers. Indeed, TSPBM increased the levels of interleukin 10 (IL-10) in the BAL fluid without altering the gene expression of cytokines in the lung tissue. Thus, this study showed that transcutaneous systemic irradiation reduced lung inflammation by altering mast cells degranulation and IL-10 level. Considering that this study is a pioneer in the used of light by the systemic route to treat asthma, the data are interesting and instigate future investigations, mainly in relation to the mechanisms involved and in dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rehman A, Amin F, Sadeeqa S (2018) Prevalence of asthma and its management: a review. J Pak Med Assoc 68(12):1823–1827

    PubMed  Google Scholar 

  2. Castillo JR, Peters SP, Busse WW (2017) Asthma exacerbations: pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 5(4):918–927

    Article  Google Scholar 

  3. Ramsahai JM, Hansbro PM, Wark PAB (2019) Mechanisms and management of asthma exacerbations. Am J Respir Crit Care Med 199(4):423–432

    Article  CAS  Google Scholar 

  4. Padem N, Saltoun C (2019) Classification of asthma. Allergy Asthma Proc 40(6):385–388

    Article  CAS  Google Scholar 

  5. Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18:673–683

    Article  CAS  Google Scholar 

  6. Sockrider M, Fussner L (2020) What is asthma? Am J Respir Crit Care Med 202(9):25–26

    Article  Google Scholar 

  7. Lambrecht BN, Hammad H, Fahy JV (2019) The cytokines of asthma. Immunity 50(4):975–999

    Article  CAS  Google Scholar 

  8. Komi DEA, Bjermer L (2019) Mast cell-mediated orchestration of the immune responses in human allergic asthma: current insights. Clin Rev Allergy Immunol 56(2):234–247

    Article  Google Scholar 

  9. Banno A, Reddy AT, Lakshmi SP, Reddy RC (2020) Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 134(9):1063–1079

    Article  CAS  Google Scholar 

  10. Gon Y, Hashimoto S (2018) Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int 67(1):12–17

    Article  CAS  Google Scholar 

  11. Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P (2017) Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 47(2):161–175

    Article  CAS  Google Scholar 

  12. Holgate ST, Walker S, West B, Boycott K (2019) The future of asthma care: personalized asthma treatment. Clin Chest Med 40:227–241

    Article  Google Scholar 

  13. Kwah JH, Peters AT (2019) Asthma in adults: principles of treatment. Allergy Asthma Proc 40(6):396–402

    Article  CAS  Google Scholar 

  14. Chung KF (2017) Clinical management of severe therapy-resistant asthma. Expert Rev Respir Med 11(5):395–402

    CAS  PubMed  Google Scholar 

  15. Ryu JH, Kim Y, Kim T, Kim YM, Jung J, Lee SY, Lee SE, Kim NG, Shin YI (2020) Light-emitting diode-based photobiomodulation reduces features of allergic asthma in mice. Allergy 75(1):230–323

    Article  Google Scholar 

  16. Rigonato-Oliveira NC, de Brito AA, Vitoretti LB, de Cunha MG, Gonçalves T, Herculano KZ, Alves CE, Lino-Dos-Santos-Franco A, Aimbire F, Vieira RP, Ligeiro de Oliveira AP (2019) Effect of low-level laser therapy (LLLT) in pulmonary inflammation in asthma induced by house dust mite (HDM): Dosimetry Study. Int J Inflam 21:3945496

    Google Scholar 

  17. Costa Carvalho JL, de Brito AA, de Oliveira AP, de Castro Faria Neto HC, Pereira TM, de Carvalho RA, Anatriello E, Aimbire F, (2016) The chemokines secretion and the oxidative stress are targets of low-level laser therapy in allergic lung inflammation. J Biophotonics 9(11–12):1208–1221

    Article  CAS  Google Scholar 

  18. Siqueira VPC, Evangelista MIS, Dos Santos A, Marcos RL, Ligeiro-de-Oliveira AP, Pavani C, Damazo AS, Lino-Dos-Santos-Franco A (2017) Light-emitting diode treatment ameliorates allergic lung inflammation in experimental model of asthma induced by ovalbumin. J Biophotonics 10(12):1683–1693

    Article  CAS  Google Scholar 

  19. Costa SG, Barioni ÉD, Ignácio A, Albuquerque J, Câmara NOS, Pavani C, Vitoretti LB, Damazo AS, Farsky SHP, Lino-Dos-Santos-Franco A (2017) Beneficial effects of red light-emitting diode treatment in experimental model of acute lung injury induced by sepsis. Sci Rep 7(1):1–12

    Article  Google Scholar 

  20. da Silva JGF, Dos Santos SS, de Almeida P, Marcos RL, Lino-Dos-Santos-Franco A (2020) Effect of systemic photobiomodulation in the course of acute lung injury in rats. Lasers Med Sci. https://doi.org/10.1007/s10103-020-03119-7

    Article  PubMed  Google Scholar 

  21. Mikhaylov V (2009) Development and clinical applications of intravenous laser blood irradiation (ILBI). Laser Ther 18:69–83

    Article  Google Scholar 

  22. Tomimura S, Silva BP, Sanches IC, Canal M, Consolim-Colombo F, Conti FF, De Angelis K, Chavantes MC (2014) Hemodynamic effect of laser therapy in spontaneously hypertensive rats. Arq Bras Cardiol 103(2):161–164

    PubMed  PubMed Central  Google Scholar 

  23. Mikhaylov VA (2015) The use of intravenous laser blood irradiation (ILBI) at 630–640 nm to prevent vascular diseases and to increase life expectancy. Laser Ther 24(1):15–26

    Article  CAS  Google Scholar 

  24. Tsukerman IIa, Iaremenko KV, Ibragimova SG (1988) Effects of intravascular laser irradiation of blood on growth and metastasis of lymphosarcoma in rats. Biull Eksp Biol Med 106(10):472–473

    PubMed  Google Scholar 

  25. TE Timoshenko DD (2010) The effect of low-intensity red and infrared laser radiation on the rat arterial and deoxygenated blood. Ross Fiziol Zh Im I M Sechenova 96(10):998–1004

    CAS  PubMed  Google Scholar 

  26. Ananchenko VG, Khanin AG, Gostishcheva OV (1999) Cytological parameters of bronchoalveolar lavage in patients with chronic obstructive bronchitis exposed to laser radiation of blood. Ter Arkh 71(11):65–67

    CAS  PubMed  Google Scholar 

  27. Coleman JW, Layton GT, Stanworth DR (1983) The kinetics of in vivo sensitization of rat peritoneal and lung mast cell: temporal dissociation from circulating levels of IgE. Eur J Immunol 13:994–998

    Article  CAS  Google Scholar 

  28. Mota I, Wong D (1969) Homologous and heterologous passive cutaneous anaphylactic activity of mouse antisera during the course of immunization. Life Sci 8(16):813–820

    Article  CAS  Google Scholar 

  29. Brochetti RA, Leal MP, Rodrigues R, da Palma RK, de Oliveira LVF, Horliana ACRT, Damazo AS, de Oliveira APL, Paula Vieira R, Lino-Dos-Santos-Franco A (2017) Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice. Lasers Med Sci 32(8):1825–1834

    Article  Google Scholar 

  30. Silva Macedo R, Peres Leal M, Braga TT, Barioni ÉD, de Oliveira DS, Ratto Tempestini Horliana AC, Câmara NO, Marcourakis T, Farsky SH, Lino-Dos-Santos-Franco A (2016) Photobiomodulation therapy decreases oxidative stress in the lung tissue after formaldehyde exposure: role of oxidant/antioxidant enzymes. Mediat Inflamm. https://doi.org/10.1155/2016/9303126

    Article  Google Scholar 

  31. da-Palma-Cruz M, da Silva RF, Monteiro D, Rehim HMMA, Grabulosa CC, de Oliveira APL, Lino-Dos-Santos-Franco A (2019) Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers Med Sci 34(1):191–199

    Article  Google Scholar 

  32. Carvalho JL, Britto A, de Oliveira AP, Castro-Faria-Neto H, Albertini R, Anatriello E, Aimbire F (2017) Beneficial effect of low-level laser therapy in acute lung injury after i-I/R is dependent on the secretion of IL-10 and independent of the TLR/MyD88 signaling. Lasers Med Sci 32(2):305–315

    Article  CAS  Google Scholar 

  33. Kashanskaia EP, Fedorov AA (2009) Low-intensity laser radiation in the combined treatment of patients with chronic obstructive bronchitis. Vopr Kurortol Fizioter Lech Fiz Kult 2:19–22

    Google Scholar 

  34. Burduli NM, Gabueva AA (2016) The influence of low-intensity laser radiation on the functional activity of neutrophils in the patients presenting with community-acquired pneumonia. Vopr Kurortol Fizioter Lech Fiz Kult 93(2):9–12

    Article  CAS  Google Scholar 

  35. Sarycheva TG, Tsybzhitova EB, Popova OV, Aleksandrov OV (2009) Morphometry and electrophoretic mobility of red blood cells from patients with asthma in the intravenous blood laser irradiation. Klin Lab Diagn 3:13–14 (Russian)

    Google Scholar 

  36. Farkhutdinov U (2006) Intravascular laser irradiation of blood in the treatment of patients with bronchial asthma. Ter Arkh 79(3):44–48 (Russian)

    Google Scholar 

  37. Ishina TI, Kakhnovskiĭ IM, Makarova OV, Solomatin AS, Alekseeva ME (2000) Evaluation of clinical effectiveness of intravenous laser irradiation of blood, plasmapheresis and their combination in patients with bronchial asthma. Ter Arkh 73(3):15–19 (Russian)

    Google Scholar 

  38. Liu TCY, Wu DF, Gu ZQ, Wu M (2010) Applications of intranasal low intensity laser therapy in sports medicine. J Innov Opt Health Sci 3(1):1–16

    Article  CAS  Google Scholar 

  39. Iusupalieva MM, Shatrov AAGT (1996) Intravenous laser irradiation of the blood at the health-resort stage of treatment for bronchial asthma patients. Vopr Kurortol Fizioter Lech Fiz Kult 5:9–12

    Google Scholar 

  40. da Silva Leal MV, Lima MO, Nicolau RA, de Carvallho TMT, Abreu JAC, Pessoa DR, Arisawa EALS (2020) Effect of modified laser transcutaneous irradiation on pain and quality of life in patients with diabetic neuropathy. Photobiomodul Photomed Laser Surg 38(3):138–144

    Article  Google Scholar 

Download references

Funding

This study was sponsored by CNPq 302746/2020-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Lino-dos-Santos-Franco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, P.T., Schapochnik, A., Klein, S. et al. Transcutaneous systemic photobiomodulation reduced lung inflammation in experimental model of asthma by altering the mast cell degranulation and interleukin 10 level. Lasers Med Sci 37, 1101–1109 (2022). https://doi.org/10.1007/s10103-021-03359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03359-1

Keywords

Navigation