Skip to main content
Log in

Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Raman spectroscopy was used to identify biochemical differences in normal brain tissue (cerebellum and meninges) compared to tumors (glioblastoma, medulloblastoma, schwannoma, and meningioma) through biochemical information obtained from the samples. A total of 263 spectra were obtained from fragments of the normal cerebellum (65), normal meninges (69), glioblastoma (28), schwannoma (8), medulloblastoma (19), and meningioma (74), which were collected using the dispersive Raman spectrometer (830 nm, near infrared, output power of 350 mW, 20 s exposure time to obtain the spectra), coupled to a Raman probe. A spectral model based on least squares fitting was developed to estimate the biochemical concentration of 16 biochemical compounds present in brain tissue, among those that most characterized brain tissue spectra, such as linolenic acid, triolein, cholesterol, sphingomyelin, phosphatidylcholine, β-carotene, collagen, phenylalanine, DNA, glucose, and blood. From the biochemical information, the classification of the spectra in the normal and tumor groups was conducted according to the type of brain tumor and corresponding normal tissue. The classification used in discrimination models were (a) the concentrations of the biochemical constituents of the brain, through linear discriminant analysis (LDA), and (b) the tissue spectra, through the discrimination by partial least squares (PLS-DA) regression. The models obtained 93.3% discrimination accuracy through the LDA between the normal and tumor groups of the cerebellum separated according to the concentration of biochemical constituents and 94.1% in the discrimination by PLS-DA using the whole spectrum. The results obtained demonstrated that the Raman technique is a promising tool to differentiate concentrations of biochemical compounds present in brain tissues, both normal and tumor. The concentrations estimated by the biochemical model and all the information contained in the Raman spectra were both able to classify the pathological groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patel AP, Fisher JL, Nichols E et al (2019) Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:376–393. https://doi.org/10.1016/S1474-4422(18)30468-X

    Article  Google Scholar 

  2. Instituto Nacional de Câncer José Alencar Gomes da Silva (2019) Estimate/2020–cancer incidence in Brazil. Instituto Nacional de Câncer José Alencar Gomes da Silva – INCA, Rio de Janeiro https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf. Accessed 5 Oct 2020

    Google Scholar 

  3. Rowland PL, Pedley AT (2011) Merrit-treated neurology. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  4. Horsnell JD, Kendall C, Stone N (2016) Towards the intra-operative use of Raman spectroscopy in breast cancer-overcoming the effects of theatre lighting. Lasers Med Sci 31:1143–1149. https://doi.org/10.1007/s10103-016-1959-y

    Article  PubMed  Google Scholar 

  5. Silveira L, Silveira FL, Bodanese B, Pacheco MT, Zângaro RA (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt 17:077003. https://doi.org/10.1117/1.JBO.17.7.077003

    Article  CAS  PubMed  Google Scholar 

  6. Stone N, CROW P, Hart PMC, Uff J, Ritchie AW (2007) The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies. Anal Bioanal Chem 387:1657–1688. https://doi.org/10.1007/s00216-006-0937-9

    Article  CAS  PubMed  Google Scholar 

  7. Silveira L, Leite KRM, Silveira FL, Srougi M, Pacheco MTT, Zângaro RA, Pasqualucci CA (2014) Discrimination of prostate carcinoma from benign prostate tissue fragments in vitro by estimating the gross biochemical alterations through Raman spectroscopy. Lasers Med Sci 29:1469–1477. https://doi.org/10.1007/s10103-014-1550-3

    Article  PubMed  Google Scholar 

  8. Aguiar PR, Silveira L, Falcão ET, Pacheco MT, Zângaro RA, Pasqualucci CA (2013) Discriminating neoplastic and normal brain tissues in vitro through Raman spectroscopy: a principal components analysis classification model. Photomed Laser Surg 31:1–10. https://doi.org/10.1089/pho.2012.3460

    Article  CAS  Google Scholar 

  9. Dreissig I, Machill S, Salzer R, Krafft C (2009) Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochim Acta A Mol Biomol Spectrosc 71:2069–2075. https://doi.org/10.1016/j.saa.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  10. Krafft C, Neudert L, Simat T, Salzer R (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta A Mol Biomol Spectrosc 61:1529–1535. https://doi.org/10.1016/j.saa.2004.11.017

    Article  CAS  PubMed  Google Scholar 

  11. Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M (2018) Raman spectral feature selection using ant colony optimization for breast cancer diagnosis. Lasers Med Sci 33:1799–1806. https://doi.org/10.1007/s10103-018-2544-3

    Article  PubMed  Google Scholar 

  12. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59. https://doi.org/10.1088/0031-9155/45/2/201

    Article  CAS  PubMed  Google Scholar 

  13. Brennan FJ, Römer TJ, Lees RS, Tercyak AM, Kramer JR, Feld MS (1997) Determination of human coronary artery composition by Raman spectroscopy. Circulation 96:99–105. https://doi.org/10.1161/01.cir.96.1.99

    Article  CAS  PubMed  Google Scholar 

  14. Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot MC, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:1–10. https://doi.org/10.1126/scitranslmed.aaa2384

    Article  CAS  Google Scholar 

  15. Dakovic M, Stojiljković AS, Bajuk-Bogdanović D, Starcevic A, Puskas L, Filipovic B, Uskokovic-Markovic S, Holclajtner-Antunovic I (2013) Profiling differences in chemical composition of brain structures using Raman spectroscopy. Talanta 117:133–138. https://doi.org/10.1016/jtalanta.2013.08.058

    Article  CAS  PubMed  Google Scholar 

  16. Kalkanis NS, Kast RE, Rosenblum ML, Mikkelsen T, Yurgelevic SM, Nelson KM, Raghunatham A, Poisson LM, Auner GW (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neuro-Oncol 116:477–485. https://doi.org/10.1007/s11060-013-1326-9

    Article  CAS  Google Scholar 

  17. Rabah R, Weber R, Serhatkulu GK, Cao A, Dai H, Pandya A, Naik R, Auner G, Poulik J, Klein M (2008) Diagnosis of neuroblastoma and ganglioneuroma using Raman spectroscopy. J Pediatr Surg 43:171–176. https://doi.org/10.1016/j.jpedsurg.2007.09.040

    Article  PubMed  Google Scholar 

  18. Koljenovic S, Schut TB, Vincent A, Kros JM, Puppels GJ (2005) Detection of meningioma in dura mater by Raman spectroscopy. Anal Chem 77:7958–7965. https://doi.org/10.1021/ac0512599

    Article  CAS  PubMed  Google Scholar 

  19. Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y (1994) Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. J Raman Spectrosc 25:25–29. https://doi.org/10.1002/jrs.1250250105

    Article  CAS  Google Scholar 

  20. Koljenović S, Choo-Smith LP, Schut TCB, Kros JM, van den Berge HJ, Puppels GJ (2002) Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy. Lab Investig 82:1265–1277. https://doi.org/10.1097/01.lab.0000032545.96931.b8

    Article  PubMed  Google Scholar 

  21. Ji M, Orringer DA, Freudiger CW, Ramkissoon S, Liu X, Lau D, Golby AJ, Norton I, Hayashi M, Agar NYR, Young GS, Spino C, Santagata S, Camelo-Piragua S, Ligon KL, Sagher O, Xie XS (2013) Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med 5:201ra119. https://doi.org/10.1126/scitranslmed.3005954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS (2005) Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci U S A 102:12371–12376. https://doi.org/10.1073/pnas.0501390102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gajjar K, Heppenstall DL, Pang W, Ashton KM, Trevisan J, Patel II, Llabjani V, Stringfellow HF, Martin-Hirsch PL, Dawson T, Martin FL (2013) Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5:89–102. https://doi.org/10.1039/C2AY25544H

    Article  CAS  Google Scholar 

  24. Krafft C, Thummler K, Sobottka SB, Schackert G, Salzer R (2006) Classification of malignant gliomas by infrared spectroscopy and linear discriminant analysis. Biopolymers 82:301–305. https://doi.org/10.1002/bip.20492

    Article  CAS  PubMed  Google Scholar 

  25. Bodanese B, Junior SL, Albertini R, Zângaro RA, Pacheco MT (2010) Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models. Photomed Laser Surg 28:S119–S127. https://doi.org/10.1089/pho.2009.2565

    Article  CAS  PubMed  Google Scholar 

  26. Mehta K, Atak A, Sahu A, Srivastava S, Krishna M (2018) An early investigative serum Raman spectroscopy study of meningioma. Analyst 143:1916–1923. https://doi.org/10.1039/c8an00224j

    Article  CAS  PubMed  Google Scholar 

  27. Schleusener J, Gluszczynska P, Reble C, Gersonde I, Helfmann J, Fluhr JW, Lademann J, Rowert-Huber J, Patzelt A, Meinke MC (2015) In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy. Exp Dermatol 24:767–772. https://doi.org/10.1111/exd.12768

    Article  PubMed  Google Scholar 

  28. Nunes CA, Freitas MP, Pinheiro ACM, Bastos SC (2012) Chemoface: a novel free user-friendly interface for chemometrics. J Braz Chem Soc 23:2003–2010

    Article  CAS  Google Scholar 

  29. Nagee ND, Marple ET, Ennis M, Elborn JS, McGarvey JJ, Villaumie JS (2009) Ex vivo diagnosis of lung cancer using a Raman miniprobe. J Phys Chem B 113:8137–8141. https://doi.org/10.1021/jp900379w

    Article  CAS  Google Scholar 

  30. Hedegaard M, Krafft C, Ditzel HJ, Johansen LE, Hassing S, Popp J (2010) Discriminating isogenic cancer cells and identifying altered unsaturated fatty acid content as associated with metastasis status, using k-means clustering and partial least squares-discriminant analysis of Raman maps. Anal Chem 82:2797–2802. https://doi.org/10.1021/ac902717d

    Article  CAS  PubMed  Google Scholar 

  31. Beljebbar A, Amharref N, Lévèques A, Dukic S, Venteo L, Schneider L, Pluot M, Manfait M (2008) Modeling and quantifying biochemical changes in C6 tumor gliomas by fourier transform infrared imaging. Anal Chem 80:8406–8415. https://doi.org/10.1021/ac800990y

    Article  CAS  PubMed  Google Scholar 

  32. Jong DWB, Schut BCT, Maquelin K, Kwast T, Bangma CH, Kok DJ, Puppless GJ (2006) Discrimination between nontumor bladder tissue and tumor by Raman spectroscopy. Anal Chem 78:7761–7769. https://doi.org/10.1021/ac061417b

    Article  CAS  PubMed  Google Scholar 

  33. Riboni L, Ghidone R, Sonnino S, Omodeo-Sale F, Gaini SM, Berra B (1984) Phospholipid content and composition of human meningiomas. Neurochem Pathol 2:171–188. https://doi.org/10.1007/BF02834351

    Article  CAS  PubMed  Google Scholar 

  34. Nygren C, von Holst H, Månsson JE, Fredman P (1997) Increased levels of cholesterol esters in glioma tissue and surrounding areas of human brain. Br J Neurosurg 11:216–220. https://doi.org/10.1080/02688699746276

    Article  CAS  PubMed  Google Scholar 

  35. Simeone P, Trerotola M, Urbanella A, Lattanzio R, Ciavardelli D, Giuseppe F, Euleterio E, Sulpizio M, Eusebi V, Pession A, Piantelli M, Alberti S (2014) A unique four-hub protein cluster associates to glioblastoma progression. PLoS One 9:e103030. https://doi.org/10.1371/journal.pone.0103030

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou Y, Liu CH, Sun Y, Pu Y, Boydston-White S, Yulong L, Alfano RR (2012) Human brain cancer studied by resonance Raman spectroscopy. J Biomed Opt 17:116021. https://doi.org/10.1117/1.JBO.17.11.116021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jarmusch KA, Alfaro CM, Pirro V, Hattab EM, Cohen-Gadol AA, Cooks RG (2016) Differential lipid profiles of normal human brain matter and gliomas by positive and negative mode desorption electrospray ionization–mass spectrometry imaging. PLoS One 11:e0163180. https://doi.org/10.1371/journal.pone.0163180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hollon T, Lewis S, Freudiger CW, Sunney Xie X, Orringer DA (2016) Improving the accuracy of brain tumor surgery via Raman-based technology. Neurosurg Focus 40:E9. https://doi.org/10.3171/2015.12.FOCUS15557

    Article  PubMed  PubMed Central  Google Scholar 

  39. Desroches J, Jermyn M, Mok K, Lemieux-Leduc C, Mercier J, St-Arnald K, Urmey K, Guiout MC, Marple E, Petrecca K, Leblond F (2015) Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification. Biomed Opt Express 6:2380–2397. https://doi.org/10.1364/BOE.6.002380

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eberhardt K, Stiebing C, Matthäus C, Schmitt M, Popp J (2015) Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn 15:773–787. https://doi.org/10.1586/14737159.2015.1036744

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Silveira Jr. thanks FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the acquisition of the Raman spectrometer (Proc. No. 2009/01788-5) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the research productivity fellowship (Process No. 306344/2017-3). R. P. Aguiar thanks CAPES (Coordination for the Improvement of Higher Education Personnel) and UAM (Universidade Anhembi Morumbi) for their doctoral fellowship.

Funding

This study has been supported in part by FAPESP (São Paulo Research Foundation, Brazil) who granted the Raman spectrometer (Grant No. 2009/01788-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Landulfo Silveira Jr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study complies with the Resolution No. 466/2012, of the Brazilian National Health Council and was approved by the Research Ethics Committee of the Universidade Brasil, São Paulo, SP, Brazil, protocol no. 1,903,652 of 02/01/2017.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, R.P., Falcão, E.T., Pasqualucci, C.A. et al. Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis. Lasers Med Sci 37, 121–133 (2022). https://doi.org/10.1007/s10103-020-03173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03173-1

Keywords

Navigation